The Full Wiki

ATF4: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

edit
Activating transcription factor 4 (tax-responsive enhancer element B67)

PDB rendering based on 1ci6.
Available structures
1ci6
Identifiers
Symbols ATF4; CREB-2; CREB2; TAXREB67; TXREB
External IDs OMIM604064 MGI88096 HomoloGene1266 GeneCards: ATF4 Gene
Orthologs
Species Human Mouse
Entrez 468 11911
Ensembl n/a ENSMUSG00000042406
UniProt n/a Q3U2J1
RefSeq (mRNA) NM_001675 NM_009716
RefSeq (protein) NP_001666 NP_033846
Location (UCSC) n/a Chr 15:
80.08 - 80.08 Mb
PubMed search [1] [2]

Activating transcription factor 4 (tax-responsive enhancer element B67), also known as ATF4, is a protein which in humans is encoded by the ATF4 gene.[1][2]

Contents

Function

This gene encodes a transcription factor that was originally identified as a widely expressed mammalian DNA binding protein that could bind a tax-responsive enhancer element in the LTR of HTLV-1. The encoded protein was also isolated and characterized as the cAMP-response element binding protein 2 (CREB-2). The protein encoded by this gene belongs to a family of DNA-binding proteins that includes the AP-1 family of transcription factors, cAMP-response element binding proteins (CREBs) and CREB-like proteins. These transcription factors share a leucine zipper region that is involved in protein-protein interactions, located C-terminal to a stretch of basic amino acids that functions as a DNA-binding domain. Two alternative transcripts encoding the same protein have been described. Two pseudogenes are located on the X chromsome at q28 in a region containing a large inverted duplication.[3]

ATF4 transcription factor is also known to play role in osteoblast differentiation along with RUNX2 and osterix.[4] Terminal osteoblast differentiation, represented by matrix mineralization is singificantly inhibited by the inactivation of JNK. JNK inactivation downregulate expression of ATF-4, and subsequently matrix mineralization.[5]

See also

Interactions

ATF4 has been shown to interact with POLR2C,[6] TRIB3[7][8] and GABBR1.[9]

References

  1. ^ Tsujimoto A, Nyunoya H, Morita T, Sato T, Shimotohno K (March 1991). "Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I". Journal of Virology 65 (3): 1420–6. PMID 1847461. PMC 239921. http://jvi.asm.org/cgi/content/abstract/65/3/1420.  
  2. ^ Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM (June 1992). "Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element". Proceedings of the National Academy of Sciences of the United States of America 89 (11): 4820–4. doi:10.1073/pnas.89.11.4820. PMID 1534408.  
  3. ^ "Entrez Gene: ATF4 activating transcription factor 4 (tax-responsive enhancer element B67)". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=468.  
  4. ^ Franceschi RT, Ge C, Xiao G, Roca H, Jiang D (2009). "Transcriptional regulation of osteoblasts". Cells, Tissues, Organs 189 (1-4): 144–52. doi:10.1159/000151747. PMID 18728356.  
  5. ^ Matsuguchi T, Chiba N, Bandow K, Kakimoto K, Masuda A, Ohnishi T (March 2009). "JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation". Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research 24 (3): 398–410. doi:10.1359/jbmr.081107. PMID 19016586.  
  6. ^ De Angelis, Roberta; Iezzi Simona, Bruno Tiziana, Corbi Nicoletta, Di Padova Monica, Floridi Aristide, Fanciulli Maurizio, Passananti Claudio (Jul. 2003). "Functional interaction of the subunit 3 of RNA polymerase II (RPB3) with transcription factor-4 (ATF4)". FEBS Lett. (Netherlands) 547 (1-3): 15–9. ISSN 0014-5793. PMID 12860379.  
  7. ^ Bowers, Alex J; Scully Sheila, Boylan John F (May. 2003). "SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia". Oncogene (England) 22 (18): 2823–35. doi:10.1038/sj.onc.1206367. ISSN 0950-9232. PMID 12743605.  
  8. ^ Zhou, Ying; Li Lu, Liu Qiongming, Xing Guichun, Kuai Xuezhang, Sun Jing, Yin Xiushan, Wang Jian, Zhang Lingqiang, He Fuchu (May. 2008). "E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3". Cell. Signal. (England) 20 (5): 942–8. doi:10.1016/j.cellsig.2008.01.010. ISSN 0898-6568. PMID 18276110.  
  9. ^ White, J H; McIllhinney R A, Wise A, Ciruela F, Chan W Y, Emson P C, Billinton A, Marshall F H (Dec. 2000). "The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (25): 13967–72. doi:10.1073/pnas.240452197. ISSN 0027-8424. PMID 11087824.  

Further reading

  • Rutkowski DT, Kaufman RJ (2003). "All roads lead to ATF4.". Dev. Cell 4 (4): 442–4. doi:10.1016/S1534-5807(03)00100-X. PMID 12689582.  
  • Nishizawa M, Nagata S (1992). "cDNA clones encoding leucine-zipper proteins which interact with G-CSF gene promoter element 1-binding protein.". FEBS Lett. 299 (1): 36–8. doi:10.1016/0014-5793(92)80094-W. PMID 1371974.  
  • Karpinski BA, Morle GD, Huggenvik J, et al. (1992). "Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element.". Proc. Natl. Acad. Sci. U.S.A. 89 (11): 4820–4. doi:10.1073/pnas.89.11.4820. PMID 1534408.  
  • Hai T, Curran T (1991). "Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity.". Proc. Natl. Acad. Sci. U.S.A. 88 (9): 3720–4. doi:10.1073/pnas.88.9.3720. PMID 1827203.  
  • Tsujimoto A, Nyunoya H, Morita T, et al. (1991). "Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I.". J. Virol. 65 (3): 1420–6. PMID 1847461.  
  • Hai TW, Liu F, Coukos WJ, Green MR (1990). "Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers.". Genes Dev. 3 (12B): 2083–90. doi:10.1101/gad.3.12b.2083. PMID 2516827.  
  • Kokame K, Kato H, Miyata T (1997). "Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes.". J. Biol. Chem. 271 (47): 29659–65. doi:10.1074/jbc.271.47.29659. PMID 8939898.  
  • Reddy TR, Tang H, Li X, Wong-Staal F (1997). "Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4).". Oncogene 14 (23): 2785–92. doi:10.1038/sj.onc.1201119. PMID 9190894.  
  • Liang G, Hai T (1997). "Characterization of human activating transcription factor 4, a transcriptional activator that interacts with multiple domains of cAMP-responsive element-binding protein (CREB)-binding protein.". J. Biol. Chem. 272 (38): 24088–95. doi:10.1074/jbc.272.38.24088. PMID 9295363.  
  • Kawai T, Matsumoto M, Takeda K, et al. (1998). "ZIP kinase, a novel serine/threonine kinase which mediates apoptosis.". Mol. Cell. Biol. 18 (3): 1642–51. PMID 9488481.  
  • Outinen PA, Sood SK, Pfeifer SI, et al. (1999). "Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells.". Blood 94 (3): 959–67. PMID 10419887.  
  • Dunham I, Shimizu N, Roe BA, et al. (1999). "The DNA sequence of human chromosome 22.". Nature 402 (6761): 489–95. doi:10.1038/990031. PMID 10591208.  
  • Podust LM, Krezel AM, Kim Y (2001). "Crystal structure of the CCAAT box/enhancer-binding protein beta activating transcription factor-4 basic leucine zipper heterodimer in the absence of DNA.". J. Biol. Chem. 276 (1): 505–13. doi:10.1074/jbc.M005594200. PMID 11018027.  
  • Murphy P, Kolstø A (2001). "Expression of the bZIP transcription factor TCF11 and its potential dimerization partners during development.". Mech. Dev. 97 (1-2): 141–8. doi:10.1016/S0925-4773(00)00413-5. PMID 11025215.  
  • White JH, McIllhinney RA, Wise A, et al. (2001). "The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx.". Proc. Natl. Acad. Sci. U.S.A. 97 (25): 13967–72. doi:10.1073/pnas.240452197. PMID 11087824.  
  • He CH, Gong P, Hu B, et al. (2001). "Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation.". J. Biol. Chem. 276 (24): 20858–65. doi:10.1074/jbc.M101198200. PMID 11274184.  
  • Siu F, Bain PJ, LeBlanc-Chaffin R, et al. (2002). "ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene.". J. Biol. Chem. 277 (27): 24120–7. doi:10.1074/jbc.M201959200. PMID 11960987.  
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.  
  • Bowers AJ, Scully S, Boylan JF (2003). "SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia.". Oncogene 22 (18): 2823–35. doi:10.1038/sj.onc.1206367. PMID 12743605.  

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Advertisements

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message