The Full Wiki

Antarctic Circumpolar Current: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

The Antarctic Circumpolar Current (ACC) is the strongest current system in the world oceans, the one that links the Atlantic, Indian and Pacific basins. Courtesy NASA/JPL-Caltech

The Antarctic Circumpolar Current (ACC) is an ocean current that flows from west to east around Antarctica. An alternative name for the ACC is the West Wind Drift. The ACC is the dominant circulation feature of the Southern Ocean and, at approximately 125 Sverdrups, the largest ocean current[1]. It keeps warm ocean waters away from Antarctica, enabling that continent to maintain its huge ice sheet.

The ACC has been known to sailors for many years; circumstances preceding the Mutiny on the Bounty and Jack London's story "Make Westing" poignantly illustrated the difficulty it caused for mariners seeking to round Cape Horn on the clipper ship route between New York and California.

The current creates two Antarctic gyres.



The ACC connects the Atlantic, Pacific and Indian Ocean basins, and as such serves as a principal pathway of exchange between these basins. The current is strongly constrained by landform and bathymetric features. Starting at South America, it flows through the Drake Passage between South America and the Antarctic Peninsula and then is split by the Scotia Arc to the east, with a shallow warm branch flowing to the north in the Falkland Current and a deeper branch passing through the Arc more to the east before also turning to the north. Passing through the Indian Ocean, the current is split by the Kerguelen Plateau in the Indian Ocean, and then moving northward again. Deflection is also seen as it passes over the mid-ocean ridge in the Southeast Pacific.

The current consists of a number of fronts. The northern boundary of the ACC is defined by the Subtropical Front. This marks the boundary between warm, salty subtropical waters (generally with a salinity of greater than 34.9 parts per thousand) and fresher, cooler subpolar waters. Moving southward we find the Subantarctic Front, along which much of the ACC transport is carried, which is defined as the latitude at which a subsurface salinity minimum or a thick layer of unstratified Subantarctic Mode Water first appears. Still further south lies the Polar Front, which is marked by a transition to very cold, relatively fresh, Antarctic Surface Water at the surface. Further south still is the Southern Boundary front, which is determined as the point where very dense abyssal waters upwell to within a few hundred meters of the surface. The bulk of the transport is carried in the middle two fronts. The total transport of the ACC at Drake Passage is estimated to be around 135 Sverdrups (135,000,000 m³/s), or about 135 times the transport of all the world's rivers combined. There is a relatively small addition of flow in the Indian Ocean, with the transport south of Tasmania reaching around 147 Sv, at which point the current is probably the largest on the planet.


The Circumpolar Current is driven by the strong westerly winds which are found in the latitudes of the Southern Ocean.

In latitudes where there are continents, winds blowing on light surface water can simply pile up light water against these continents. But in the Southern Ocean, the momentum imparted to the surface waters cannot be balanced in this way. Different theories of the Circumpolar Current balance the momentum imparted by the winds in different ways. The increasing eastward momentum imparted by the winds causes water parcels to drift outwards from the axis of the Earth's rotation (in other words, northward) as a result of the Coriolis force. This northward transport is balanced by a southward, pressure-driven flow below the depths of the major ridge systems. Some theories connect these flows directly, implying that there is significant upwelling of dense deep waters within the Southern Ocean, transformation of these waters into light surface waters, and a transformation of waters in the opposite direction to the north. Such theories link the magnitude of the Circumpolar Current with the global thermohaline circulation, particularly the properties of the North Atlantic.

Alternatively, ocean eddies, the oceanic equivalent of atmospheric storms, or the large scale meanders of the Circumpolar Current may directly transport momentum downwards in the water column. This is because such flows can produce a net southward flow in the troughs and a net northward flow over the ridges without requiring any transformation of density. In practice both the thermohaline and the eddy/meander mechanisms are likely to be important.

The current flows at a rate of about four km per hour.[2] Recent studies have indicated that the Antarctic Circumpolar Current varies with time. Evidence of this is the Antarctic Circumpolar Wave, a periodic oscillation that affects the climate of much of the southern hemisphere. There is also the Antarctic oscillation, which involves changes in the location and strength of Antarctic winds. Trends in the Antarctic Oscillation have been hypothesized to account for an increase in the transport of the Circumpolar Current over the past two decades.


The Antarctic Circumpolar Current formed during Late Eocene through Early Oligocene, as Antarctica and South America finally separated enough for the Drake Passage to form some 30 to 34 million years ago. As Antarctica became isolated from warmer waters it cooled and glaciers began to form on the formerly forested continent.


An expedition in May 2008 by 19 scientists studied the geology and biology of eight Macquarie Ridge sea mounts, as well as the Antarctic Circumpolar Current to investigate the effects of climate change of the southern Ocean. The circumpolar current merges the waters of the Atlantic, Indian, and Pacific Oceans and carries up to 150 times the volume of water flowing in all of the world's rivers.[2] After studying the circumpolar current it is clear that it strongly influences regional and global climate as well as underwater biodiversity.[3]


External links



Got something to say? Make a comment.
Your name
Your email address