The Full Wiki

Antibody-dependent cell-mediated cytotoxicity: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) is a mechanism of cell-mediated immunity whereby an effector cell of the immune system actively lyses a target cell that has been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection. Classical ADCC is mediated by natural killer (NK) cells; monocytes and eosinophils can also mediate ADCC. For example, eosinophils can kill certain parasitic worms known as helminths through ADCC. ADCC is part of the adaptive immune response due to its dependence on a prior antibody response.


ADCC by NK cells

The typical ADCC involves activation of NK cells by antibodies. An NK cell's Fc receptor recognizes the Fc portion of an antibody, such as IgG, which has bound to the surface of a pathogen-infected target cell. The most common Fc receptor on the surface of an NK Cell is called CD16 or FcγRIII. Once the Fc receptor binds to the Fc region of IgG, the Natural Killer cell releases cytokines such as IFN-γ, and cytotoxic granules containing perforin and granzymes that enter the target cell and promote cell death by triggering apoptosis. This is similar to, but independent of, responses by cytotoxic T cells (CTLs).

ADCC by eosinophils

Large parasites like helminths are too big to be engulfed and killed by phagocytosis. They also have an external structure or integument that is resistant to attack by substances released by neutrophils and macrophages. However, an antibody called IgE can coat these parasites. The Fc receptor (FceRI) of an eosinophil can then recognize IgE. The interaction between FceRI and the Fc portion of helminth-bound IgE causes the eosinophil to degranulate.

ADCC in vitro

Several laboratory methods exist for determining the efficacy of antibodies or effector cells in eliciting ADCC. Among these methods include chromium-51 [Cr51] release assay, europium [Eu] release assay, and sulfur-35 [S35] release assay. Usually, a labelled target cell line expressing a certain surface-exposed antigen is incubated with antibody specific for that antigen. After washing, effector cells expressing Fc receptor CD16 are co-incubated with the antibody-labelled target cells. Target cell lysis is subsequently measured by release of intracellular label by a scintillation counter or spectrophotometry.

A common challenge faced by ADCC assays is high background signaling due to cellular "leakiness". While both Cr51 and Eu-based assays face this challenge, S35-containing methionine and cysteine pre-incubated with target cells leads to incorporation of radio-labelled molecules into newly translated peptides.

Monoclonal antibody action against tumors

Experiments in mice indicate that ADCC is an important mechanism of action of therapeutic monoclonal antibodies, including trastuzumab and rituximab, against tumors. [1] In the clinic the FcgRIII 158V/F polymorphism interfere with the ability to generate ADCC responses in vitro during trastuzumab treatmnet.


  1. ^ Clynes, RA; Towers, TL; Presta, LG; Ravetch, JV (2000). "Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets". Nat Med 6 (4): 443-6. PMID 10742152. 

Further reading

External links



Got something to say? Make a comment.
Your name
Your email address