Antimicrobial: Wikis

  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Antimicrobial

Include this on your site/blog:

Encyclopedia

From Wikipedia, the free encyclopedia

An antimicrobial is a substance that kills or inhibits the growth of microorganisms[1] such as bacteria, fungi, or protozoans. Antimicrobial drugs either kill microbes (microbicidal) or prevent the growth of microbes (microbistatic). Disinfectants are antimicrobial substances used on non-living objects.

The history of antimicrobials begins with the observations of Pasteur and Joubert, who discovered that one type of bacteria could prevent the growth of another. They did not know at that time that the reason one bacterium failed to grow was that the other bacterium was producing an antibiotic. Technically, antibiotics are only those substances that are produced by one microorganism that kill, or prevent the growth, of another microorganism. Of course, in today's common usage, the term antibiotic is used to refer to almost any drug that attempts to rid your body of a bacterial infection. Antimicrobials include not just antibiotics, but synthetically formed compounds as well.

The discovery of antimicrobials like penicillin and tetracycline paved the way for better health for millions around the world. Before penicillin became a viable medical treatment in the early 1940's, no true cure for gonorrhea, strep throat, or pneumonia existed. Patients with infected wounds often had to have a wounded limb removed, or face death from infection. Now, most of these infections can be cured easily with a short course of antimicrobials.

However, the future effectiveness of antimicrobial therapy is somewhat in doubt. Microorganisms, especially bacteria, are becoming resistant to more and more antimicrobial agents. Bacteria found in hospitals appear to be especially resilient, and are causing increasing difficulty for the sickest patients–those in the hospital. Currently, bacterial resistance is combated by the discovery of new drugs. However, microorganisms are becoming resistant more quickly than new drugs are being made available; thus, future research in antimicrobial therapy may focus on finding how to overcome resistance to antimicrobials, or how to treat infections with alternative means, such as species-specific phages.

Contents

Main classes

Antibiotics

Antibiotics are generally used to treat bacterial infections. The toxicity to humans and other animals from antibiotics is generally considered to be low. However, prolonged use of certain antibiotics can decrease the number of gut flora, which can have a negative impact on health. Some recommend that, during or after prolonged antibiotic use, one should consume probiotics and eat reasonably to replace destroyed gut flora.

The term antibiotic originally described only those formulations derived from living organisms, but is now applied also to synthetic antimicrobials, such as the sulfonamides.

The discovery, development, and clinical use of antibiotics during the 20th century has decreased substantially the mortality from bacterial infections. The antibiotic era began with the pneumatic application of nitroglycerine drugs, followed by a “golden” period of discovery from about 1945 to 1970, when a number of structurally diverse, highly effective agents were discovered and developed. However, since 1980 the introduction of new antimicrobial agents for clinical use has declined, in part because of the enormous expense of developing and testing new drugs. Paralleled to this there has been an alarming increase in bacterial resistance to existing agents.[2]

Antibiotics are among the most commonly used drugs. For example, 30% or more hospitalized patients are treated with one or more courses of antibiotic therapy.[citation needed] However, antibiotics are also among the drugs commonly misused by physicians, e.g. usage of antibiotic agents in viral respiratory tract infections. The inevitable consequence of widespread and injudicious use of antibiotics has been the emergence of antibiotic-resistant pathogens, resulting in a serious threat to global public health. The resistance problem demands that a renewed effort be made to seek antibacterial agents effective against pathogenic bacteria resistant to current antibiotics. One of the possible strategies towards this objective is the rational localization of bioactive phytochemicals.

Antivirals

Antiviral drugs are a class of medication used specifically for treating viral infections. Like antibiotics, specific antivirals are used for specific viruses. They are relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from viricides, which actively deactivate virus particles outside the body.

Most of the antivirals now available are designed to help deal with HIV; herpes viruses, best known for causing cold sores and genital herpes, but actually causing a wide range of diseases; the hepatitis B and C viruses, which can cause liver cancer, and influenza A and B viruses. Researchers are now working to extend the range of antivirals to other families of pathogens.

Antiviral drugs work by inhibiting the virus before it enters the cell, stopping it from reproducing, or, in some cases, preventing it from exiting the cell. However, like antibiotics, viruses may evolve to resist the antiviral drug.

Antifungals

An antifungal drug is medication used to treat fungal infections such as athlete's foot, ringworm, candidiasis (thrush), serious systemic infections such as cryptococcal meningitis, and others.

Antifungals work by exploiting differences between mammalian and fungal cells to kill off the fungal organism without dangerous effects on the host. Unlike bacteria, both fungi and humans are eukaryotes. Thus, fungal and human cells are similar at the molecular level, making it more difficult to find a target for an antifungal drug to attack that does not also exist in the infected organism. Consequently, there are often side effects to some of these drugs. Some of these side effects can be life-threatening if the drug is not used properly.

Antiparasitics

Antiparasitics are a class of medications which are indicated for the treatment of infection by parasites, such as nematodes, cestodes, trematodes, infectious protozoa, and amoebae. Like antifungals, they must kill the infecting pest without serious damage to the host.

Non-pharmaceutical antimicrobials

A wide range of chemical and natural compounds are used as antimicrobials. Organic acids are used widely as antimicrobials in food products, e.g. lactic acid, citric acid, acetic acid, and their salts, either as ingredients, or as disinfectants. For example, beef carcasses often are sprayed with acids, and then rinsed or steamed, to reduce the prevalence of E. coli O157:H7.

Traditional healers long have used plants to prevent or cure infectious disease. Many of these plants have been investigated scientifically for antimicrobial activity, and a large number of plant products have been shown to inhibit the growth of pathogenic microorganisms. A number of these agents appear to have structures and modes of action that are distinct from those of the antibiotics in current use, suggesting that cross-resistance with agents already in use may be minimal. So, it is worthwhile to study plants and plant products for activity against resistant bacteria.

Essential oils

The antimicrobial properties of 21 plant essential oils and two essences were investigated against five food-borne pathogens, Campylobacter jejuni, Salmonella enteriditis, Escherichia coli, Staphylococus aureus and Listeria monocytogenes. The oils of bay, cinnamon, clove and thyme were the most inhibitory, each having a bacteriostatic concentration of 0.075% or less against all five pathogens. ( A. Smith-Palmer, J. Stewart and L. Fyfe. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology 1998. 26. 118-122)


Many essential oils are included in pharmacopoeias as having antimicrobial activity, including:

Cations and elements

Many heavy metal cations such as Hg2+, Cu2+, and Pb2+ have antimicrobial activities, but are also very toxic to other living organisms, thus making them unsuitable for treating infectious diseases. Colloidal silver is commonly used as an antimicrobial in alternative medicine without clear scientific proof of effectiveness.

See also

References

  1. ^ "Antimicrobial - Definition from the Merriam-Webster Online Dictionary". http://www.merriam-webster.com/dictionary/Antimicrobial. Retrieved 2009-05-02. 
  2. ^ Levy SB (ed) (1994) Drug Resistance: The New Apocalypse (special issue) Trends Microbiol 2: 341–425

External links








Got something to say? Make a comment.
Your name
Your email address
Message