The Full Wiki

BRF1 (gene): Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

BRF1 homolog, subunit of RNA polymerase III transcription initiation factor IIIB (S. cerevisiae)
Symbols BRF1; BRF; FLJ42674; FLJ43034; GTF3B; MGC105048; TAF3B2; TAF3C; TAFIII90; TF3B90; TFIIIB90; hBRF
External IDs OMIM604902 MGI1919558 HomoloGene1161 GeneCards: BRF1 Gene
RNA expression pattern
PBB GE BRF1 203754 s at tn.png
PBB GE BRF1 215677 s at tn.png
PBB GE BRF1 215676 at tn.png
More reference expression data
Species Human Mouse
Entrez 2972 72308
Ensembl ENSG00000185024 ENSMUSG00000011158
UniProt Q92994 Q6PED6
RefSeq (mRNA) NM_001519 NM_028193
RefSeq (protein) NP_001510 NP_082469
Location (UCSC) Chr 14:
104.75 - 104.84 Mb
Chr 12:
113.41 - 113.45 Mb
PubMed search [1] [2]

Transcription factor IIIB 90 kDa subunit is a protein that in humans is encoded by the BRF1 gene.[1][2][3]

This gene encodes one of the three subunits of the RNA polymerase III transcription factor complex. This complex plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. The gene product belongs to the TF2B family. Three alternatively spliced variants encoding three different isoforms, that function at different promoters transcribed by RNA polymerase III, have been identified. A transcript encoding a fourth isoform has not yet been completely characterized.[3]


BRF1 (gene) has been shown to interact with Retinoblastoma-like protein 2,[4] Retinoblastoma-like protein 1,[4] TATA binding protein[5][1] and Retinoblastoma protein.[6][4]


  1. ^ a b Wang Z, Roeder RG (Aug 1995). "Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains". Proc Natl Acad Sci U S A 92 (15): 7026–30. PMID 7624363.  
  2. ^ Mital R, Kobayashi R, Hernandez N (Jan 1997). "RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB". Mol Cell Biol 16 (12): 7031–42. PMID 8943358.  
  3. ^ a b "Entrez Gene: BRF1 BRF1 homolog, subunit of RNA polymerase III transcription initiation factor IIIB (S. cerevisiae)".  
  4. ^ a b c Sutcliffe, J E; Cairns C A, McLees A, Allison S J, Tosh K, White R J (Jun. 1999). "RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130". Mol. Cell. Biol. (UNITED STATES) 19 (6): 4255–61. ISSN 0270-7306. PMID 10330166.  
  5. ^ McCulloch, V; Hardin P, Peng W, Ruppert J M, Lobo-Ruppert S M (Aug. 2000). "Alternatively spliced hBRF variants function at different RNA polymerase III promoters". EMBO J. (ENGLAND) 19 (15): 4134–43. doi:10.1093/emboj/19.15.4134. ISSN 0261-4189. PMID 10921893.  
  6. ^ Johnston, Imogen M; Allison Simon J, Morton Jennifer P, Schramm Laura, Scott Pamela H, White Robert J (Jun. 2002). "CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells". Mol. Cell. Biol. (United States) 22 (11): 3757–68. ISSN 0270-7306. PMID 11997511.  

Further reading

  • Chesnokov I, Chu WM, Botchan MR, Schmid CW (1997). "p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner.". Mol. Cell. Biol. 16 (12): 7084–8. PMID 8943363.  
  • Chu WM, Wang Z, Roeder RG, Schmid CW (1997). "RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2.". J. Biol. Chem. 272 (23): 14755–61. doi:10.1074/jbc.272.23.14755. PMID 9169441.  
  • Wang Z, Roeder RG (1997). "Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation.". Genes Dev. 11 (10): 1315–26. doi:10.1101/gad.11.10.1315. PMID 9171375.  
  • Sutcliffe JE, Cairns CA, McLees A, et al. (1999). "RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130.". Mol. Cell. Biol. 19 (6): 4255–61. PMID 10330166.  
  • Hsieh YJ, Wang Z, Kovelman R, Roeder RG (1999). "Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III.". Mol. Cell. Biol. 19 (7): 4944–52. PMID 10373544.  
  • Hsieh YJ, Kundu TK, Wang Z, et al. (1999). "The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity.". Mol. Cell. Biol. 19 (11): 7697–704. PMID 10523658.  
  • McCulloch V, Hardin P, Peng W, et al. (2000). "Alternatively spliced hBRF variants function at different RNA polymerase III promoters.". Embo J. 19 (15): 4134–43. doi:10.1093/emboj/19.15.4134. PMID 10921893.  
  • Johnston IM, Allison SJ, Morton JP, et al. (2002). "CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells.". Mol. Cell. Biol. 22 (11): 3757–68. doi:10.1128/MCB.22.11.3757-3768.2002. PMID 11997511.  
  • Cabart P, Murphy S (2002). "Assembly of human small nuclear RNA gene-specific transcription factor IIIB complex de novo on and off promoter.". J. Biol. Chem. 277 (30): 26831–8. doi:10.1074/jbc.M203119200. PMID 12016223.  
  • Willis IM (2002). "A universal nomenclature for subunits of the RNA polymerase III transcription initiation factor TFIIIB.". Genes Dev. 16 (11): 1337–8. doi:10.1101/gad.998102. PMID 12066800.  
  • Stoecklin G, Colombi M, Raineri I, et al. (2002). "Functional cloning of BRF1, a regulator of ARE-dependent mRNA turnover.". Embo J. 21 (17): 4709–18. doi:10.1093/emboj/cdf444. PMID 12198173.  
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.  
  • Weser S, Riemann J, Seifart KH, Meissner W (2003). "Assembly and isolation of intermediate steps of transcription complexes formed on the human 5S rRNA gene.". Nucleic Acids Res. 31 (9): 2408–16. doi:10.1093/nar/gkg345. PMID 12711686.  
  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs.". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.  
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334.  
  • Schmidlin M, Lu M, Leuenberger SA, et al. (2005). "The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B.". Embo J. 23 (24): 4760–9. doi:10.1038/sj.emboj.7600477. PMID 15538381.  
  • Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network.". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.  
  • Lim J, Hao T, Shaw C, et al. (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.". Cell 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569.  


Got something to say? Make a comment.
Your name
Your email address