The Full Wiki

BZIP domain: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

(Redirected to bZIP domain article)

From Wikipedia, the free encyclopedia

bZIP transcription factor
CREB.png
CREB (top) is a transcription factor capable of binding DNA via the bZIP domain (bottom) and regulating gene expression.
Identifiers
Symbol bZIP_1
Pfam PF00170
InterPro IPR011616
PROSITE PDOC00036
SCOP 1ysa

The Basic Leucine Zipper Domain (bZIP domain) is found in many DNA binding eukaryotic proteins. One part of the domain contains a region that mediates sequence specific DNA binding properties and the leucine zipper that is required for the dimerization of two DNA binding regions. The DNA binding region comprises a number of basic aminoacids such as arginine and lysine. Proteins containing this domain are transcription factors.[1][2]

Contents

bZIP transcription factors

bZIP transcription factors are found in all organisms. A recent evolutionary study revealed that 4 bZIP genes were encoded by the genome of the most recent common ancestor of all plants.[3] Interactions between bZIP transcription factors play important role in cancer development[4] in epithelial tissues, steroid hormone synthesis by cells of endocrine tissues,[5] factors affecting reproductive functions,[6] and several other phenomena that affect human health.

bZIP domain containing proteins

  • AP-1 fos/jun heterodimer that forms a transcription factor
  • Jun-B transcription factor
  • CREB cAMP response element transcription factor
  • OPAQUE2 (O2) transcription factor of the 22-kD zein gene that encodes a class of storage proteins in the endosperm of maize (Zea Mays) kernels

Human proteins containing this domain

ATF1; ATF2; ATF4; ATF5; ATF6; ATF7; BACH1; BACH2; BATF; BATF2; CREB1; CREB3; CREB3L1; CREB3L2; CREB3L3; CREB3L4; CREB5; CREBL1; CREM; E4BP4; FOSL1; FOSL2; JUN; JUNB; JUND; NFE2; NFE2L2; NFE2L3; SNFT; CREM

External links

References

  1. ^ Ellenberger T (1994). "Getting a grip in DNA recognition: structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA-binding domains.". Curr. Opin. Struct. Biol. 4 (1): 12–21. doi:10.1016/S0959-440X(94)90054-X.  
  2. ^ Hurst HC (1995). "Transcription factors 1: bZIP proteins". Protein Profile 2 (2): 101–68. PMID 7780801.  
  3. ^ Corrêa LGG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. (2008). "The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes". PLos ONE 3 (8): e2944. doi:10.1371/journal.pone.0002944. PMID 18698409.  
  4. ^ Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (April 2008). "The role of ATF-2 in oncogenesis". Bioessays 30 (4): 314–27. doi:10.1002/bies.20734. PMID 18348191.  
  5. ^ Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, Zeleznik AJ, Stocco DM (January 2002). "Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family". Mol. Endocrinol. 16 (1): 184–99. doi:10.1210/me.16.1.184. PMID 11773448.  
  6. ^ Hoare S, Copland JA, Wood TG, Jeng YJ, Izban MG, Soloff MS (May 1999). "Identification of a GABP alpha/beta binding site involved in the induction of oxytocin receptor gene expression in human breast cells, potentiation by c-Fos/c-Jun". Endocrinology 140 (5): 2268–79. doi:10.1210/en.140.5.2268. PMID 10218980.  
Advertisements

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message