The Full Wiki

Barometer: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...

More interesting facts on Barometer

Include this on your site/blog:


From Wikipedia, the free encyclopedia

Schematic drawing of a simple mercury barometer with vertical mercury column and reservoir at base
Goethe's device

A barometer is an instrument used to measure atmospheric pressure. It can measure the pressure exerted by the atmosphere by using water, air, or mercury. Pressure tendency can forecast short term changes in the weather. Numerous measurements of air pressure are used within surface weather analysis to help find surface troughs, high pressure systems, and frontal boundaries.



Although Evangelista Torricelli[1][2][3] is universally credited with inventing the barometer in 1643, two other noteworthy efforts must be cited. Historical documentation also suggests Gasparo Berti, an Italian mathematician and astronomer, unintentionally built a water barometer sometime between 1640 and 1643.[1][4] French scientist and philosopher Rene Descartes described the design of an experiment on atmospheric pressure determination as early as 1631, but there is no evidence that he built a working barometer at that time.[1]

On July 27, 1630, Giovanni Batista Baliani wrote a letter to Galileo Galilei about the explanation of an experiment he had made in which a siphon, led over a hill about twenty-one meters high, failed to work. Galileo responded with an explanation of the phenomena: he proposed that it was the power of a vacuum which held the water up, and at a certain height (in this case, thirty-four feet) the amount of water simply became too much and the force could not hold any more, like a cord that can only withstand so much weight hanging from it.[5]
Galileo's ideas reached Rome in December of 1638 in his Discorsi. Rafael Magiotti and Gasparo Berti were excited by these ideas, and decided to seek a better way to attempt to produce a vacuum than with a siphon. Magiotti devised such an experiment, and sometime between 1639 and 1641, Berti (with Magiotti, Athanasius Kircher and Nicolo Zucchi present) carried it out.[5]

Four accounts of Berti's experiment exist, but a simple model to his experiment consisted of filling a long tube with water that had both ends plugged up, then placing the tube into a basin already full of water. The bottom end of the tube was opened, and the water that had begun inside of it poured out of the bottom hole into the basin. However, only part of the water in the tube flowed out, and the level of the water inside the tube stayed at an exact level, which happened to be thirty-four feet, the exact height Baliani and Galileo had observed that was limited by the siphon. What was most important about this experiment was that the lowering water had had left a space above it in the tube which had had no intermediate contact with air to fill it up. This seemed to suggest the possibility of a vacuum existing in the space above the water.[5]

Evangelista Torricelli, a friend and student of Galileo, dared to look at the entire problem from a different angle. In a letter to Michelangelo Ricci in 1644 concerning the experiments with the water barometer, he wrote:

Many have said that a vacuum does not exist, others that it does exist in spite of the repugnance of nature and with difficulty; I know of no one who has said that it exists without difficulty and without a resistance from nature. I argued thus: If there can be found a manifest cause from which the resistance can be derived which is felt if we try to make a vacuum, it seems to me foolish to try to attribute to vacuum those operations which follow evidently from some other cause; and so by making some very easy calculations, I found that the cause assigned by me (that is, the weight of the atmosphere) ought by itself alone to offer a greater resistance than it does when we try to produce a vacuum.[6]

It was traditionally thought (especially by the Aristotelians) that the air did not have lateral weight: that is, that the miles of air above us don't weigh down on the air at our level. Even Galileo had accepted the weightlessness of air as a simple truth. Torricelli questioned that assumption, and instead proposed that the air had weight, and that it was the weight of the air (not the attracting force of the vacuum) which held (or rather, pushed) up the column of water. He thought that the level the water stayed at (thirty-four feet) was reflective of the force of the air's weight pushing on it (specifically, pushing on the water in the basin and thus limiting how much water can fall from the tube into it). In other words, he viewed the barometer as a balance, an instrument for measurement (as opposed to merely being an instrument to create a vacuum), and because he was the first to view it this way, he is traditionally considered the inventor of the barometer (in the sense in which we use the term now).[5]

Due to rumors circulating within Torricelli's gossipy Italian neighborhood, which included that he was up to some form of sorcery or witchcraft, Torricelli realized he had to keep his experiment more secretive, or run the risk of being arrested. He needed to use a liquid that was heavier than water, and from his previous association and suggestions by Galileo, he deduced by using mercury, a shorter tube could be used. With the use of mercury, then called "quicksilver", which is about 14 times heavier than water, a tube only 32 inches was now needed, not 35 feet.[7]

In 1646, Blaise Pascal along with Pierre Petit, had repeated and perfected Torricelli's experiment after hearing about it from Marin Mersenne, who himself had been shown the experiment by Torricelli toward the end of 1644. Pascal further devised an experiment to test the Aristotelian proposition that it was vapors from the liquid that filled the space in a barometer. His experiment compared water with wine, and since the latter was considered more 'spiritous', the Aristotelian's expected the wine to stand lower (since more vapors would mean more pushing against the liquid column). Pascal performed the experiment publicly, inviting the Aristotelians to predict the outcome beforehand. The Aristotelians predicted the wine would stand lower. It did not.[5]

However, Pascal went even further to test the mechanical theory. If, as suspected by mechanical philosophers like Torricelli and Pascal, air had lateral weight, the weight of the air would be less in higher altitudes. Therefore, Pascal wrote to his brother-in-law, Florin Perier, living near the mountain called the Puy de Dome, requesting that the latter perform a crucial experiment. Perier was instructed to take a barometer up the Puy de Dom and make measurements along the way of how high the column of mercury stood. He was then to compare it to measurements taken at the foot of the mountain to see if those measurements taken higher up were in fact smaller. In September of 1648, Perier carefully and meticulously carried out the experiment, and found that Pascal's predictions had been correct. The mercury barometer stood lower the higher one went.[5]



Water-based barometers

The concept that 'decreasing atmospheric pressure predicts stormy weather' was postulated by Lucien Vidie -- and it's the basis for a weather prediction device called a 'storm glass' or 'Goethe barometer' (who popularized it in Germany). It consists of a glass container with a sealed body, half filled with water. A narrow spout connects to the body below the water level and rises above the water level, where it is open to the atmosphere. When the air pressure is lower than it was at the time the body was sealed, the water level in the spout will rise above the water level in the body; when the air pressure is higher, the water level in the spout will drop below the water level in the body. A variation of this type of barometer can be easily made at home.[8]

Mercury barometers

A mercury barometer has a glass tube of at least 33 inches (about 84 cm) in height, closed at one end, with an open mercury-filled reservoir at the base. The weight of the mercury actually creates a vacuum in the top of the tube. Mercury in the tube adjusts until the weight of the mercury column balances the atmospheric force exerted on the reservoir. High atmospheric pressure places more force on the reservoir, forcing mercury higher in the column. Low pressure allows the mercury to drop to a lower level in the column by lowering the force placed on the reservoir. Since higher temperature at the instrument will reduce the density of the mercury, the scale for reading the height of the mercury is adjusted to compensate for this effect.

Torricelli documented that the height of the mercury in a barometer changed slightly each day and concluded that this was due to the changing pressure in the atmosphere.[1] He wrote: "We live submerged at the bottom of an ocean of elementary air, which is known by incontestable experiments to have weight".

The mercury barometer's design gives rise to the expression of atmospheric pressure in inches or millimeters (torr): the pressure is quoted as the level of the mercury's height in the vertical column. 1 atmosphere is equivalent to about 29.9 inches, or 760 millimeters, of mercury. The use of this unit is still popular in the United States, although it has been disused in favor of SI or metric units in other parts of the world. Barometers of this type normally measure atmospheric pressures between 28 and 31 inches of mercury.

Design changes to make the instrument more sensitive, simpler to read, and easier to transport resulted in variations such as the basin, siphon, wheel, cistern, Fortin, multiple folded, stereometric, and balance barometers. Fitzroy barometers combine the standard mercury barometer with a thermometer, as well as a guide of how to interpret pressure changes. Fortin barometers use a variable displacement mercury cistern, usually constructed with a thumbscrew pressing on a leather diaphragm bottom. This compensates for displacement of mercury in the column with varying pressure. To use a Fortin barometer, the level of mercury is set to the zero level before the pressure is read on the column. Some models also employ a valve for closing the cistern, enabling the mercury column to be forced to the top of the column for transport. This prevents water-hammer damage to the column in transit.

On June 5, 2007, a European Union directive was enacted to restrict the sale of mercury, thus effectively ending the production of new mercury barometers in Europe.

Aneroid barometers

Old aneroid barometer
Modern aneroid barometer

An aneroid barometer uses a small, flexible metal box called an aneroid cell. This aneroid capsule (cell) is made from an alloy of beryllium and copper.[9] The evacuated capsule (or usually more capsules) is prevented from collapsing by a strong spring. Small changes in external air pressure cause the cell to expand or contract. This expansion and contraction drives mechanical levers such that the tiny movements of the capsule are amplified and displayed on the face of the aneroid barometer. Many models include a manually set needle which is used to mark the current measurement so a change can be seen. In addition, the mechanism is made deliberately 'stiff' so that tapping the barometer reveals whether the pressure is rising or falling as the pointer moves. It also was invented by Blaise Pascal.


A barograph, which records a graph of some atmospheric pressure, uses an aneroid barometer mechanism to move a needle on a smoked foil or to move a pen upon paper, both of which are attached to a drum moved by clockwork.[10]


ASI's next generation, solid state, precision digital graphing barometer.
Barograph using five stacked aneroid barometer cells.

A barometer is commonly used for weather prediction, as high air pressure in a region indicates fair weather while low pressure indicates that storms are more likely. When used in combination with wind observations, reasonably accurate short-term forecasts can be made.[11] Simultaneous barometric readings from across a network of weather stations allow maps of air pressure to be produced, which were the first form of the modern weather map when created in the 19th century. Isobars, lines of equal pressure, when drawn on such a map, gives a contour map showing areas of high and low pressure. Localized high atmospheric pressure acts as a barrier to approaching weather systems, diverting their course. Low atmospheric pressure, on the other hand, represents the path of least resistance for a weather system, making it more likely that low pressure will be associated with increased storm activities. Typically if the barometer is falling, deteriorating weather or some form of precipitation is indicated; however, if the barometer is rising, it is likely there will be fair weather or no precipitation.



The density of mercury will change with temperature, so a reading must be adjusted for the temperature of the instrument. For this purpose a mercury thermometer is usually mounted on the instrument. Temperature compensation of an aneroid barometer is accomplished by including a bi-metal element in the mechanical linkages. Aneroid barometers sold for domestic use seldom go to the trouble.


As the air pressure will be decreased at altitudes above sea level (and increased below sea level) the actual reading of the instrument will be dependent upon its location. This pressure is then converted to an equivalent sea-level pressure for purposes of reporting and for adjusting aircraft altimeters (as aircraft may fly between regions of varying normalized atmospheric pressure owing to the presence of weather systems). Aneroid barometers have a mechanical adjustment for altitude that allows the equivalent sea level pressure to be read directly and without further adjustment if the instrument is not moved to a different altitude.


Table of Pneumaticks, 1728 Cyclopaedia

See also


  1. ^ a b c d "The Invention of the Barometer". Retrieved 2010-02-04. 
  2. ^ "History of the Barometer". Retrieved 2010-02-04. 
  3. ^ "Evangelista Torricelli, The Invention of the Barometer". Retrieved 2010-02-04. 
  4. ^ Drake, Stillman (1970). "Berti, Gasparo". Dictionary of Scientific Biography. 2. New York: Charles Scribner's Sons. pp. 83–84. ISBN 0684101149. 
  5. ^ a b c d e f "History of the Barometer". 2002-01-21. Retrieved 2010-02-04. 
  6. ^ "Torricelli's letter to Michelangelo Ricci". Retrieved 2010-02-04. 
  7. ^ "Brief History of the Barometer". Retrieved 2010-02-04. 
  8. ^ JetStream. Learning Lesson: Measure the Pressure - The "Wet" Barometer. Retrieved on 2007-05-05.
  9. ^ How Products Are Made: Aneroid Barometer. Retrieved on 2007-05-05.
  10. ^ Glossary of Meteorology. Barograph. Retrieved on 2007-05-05.
  11. ^ USA Today. Using winds and a barometer to make forecasts. Retrieved on 2007-05-05.

Further reading

  • Burch, David F. The Barometer Handbook; a modern look at barometers and applications of barometric pressure. Seattle: Starpath Publications (2009), ISBN 978-0-914025-12-2.
  • Middleton, W.E. Knowles. (1964). The history of the barometer. Baltimore: Johns Hopkins Press. New edition (2002), ISBN 0801871549.

External links

1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

BAROMETER (from Gr. f3apos, pressure, and µErpov, measure), an instrument by which the weight or pressure of the atmosphere is measured. The ordinary or mercurial barometer consists of a tube about 36 in. long, hermetically closed at the upper end and containing mercury. In the "cistern barometer" the tube is placed with its open end in a basin of mercury, and the atmospheric pressure is measured by the difference of the heights of the mercury in the tube and the cistern. In the "siphon barometer" the cistern is dispensed with, the tube being bent round upon itself at its lower end; the reading is taken of the difference in the levels of the mercury in the two limbs. The "aneroid" barometer (from the Gr. aprivative, and vripos, wet) employs no liquid, but depends upon the changes in volume experienced by an exhausted metallic chamber under varying pressures. "Baroscopes" simply indicate variations in the atmospheric pressure, without supplying quantitative data. "Barographs" are barometers which automatically record any variations in pressure.

Philosophers prior to Galileo had endeavoured to explain the action of a suction pump by postulating a principle that "Nature Historical. abhorred a vacuum." When Galileo observed that a H common suction pump could not raise water to a greater height than about 32 ft. he considered that the "abhorrence" was limited to 3 2 ft., and commended the matter to the attention of his pupil Evangelista Torricelli. Torricelli perceived a ready explanation of the observed phenomenon if only it could be proved that the atmosphere had weight, and the pressure which it exerted was equal to that of a 32-ft. column of water. He proved this to be the correct explanation by reasoning as follows: - If the atmosphere supports 32 feet of water, then it should also support a column of about 22 ft. of mercury, for this liquid is about 131 times heavier than water. This he proved in the following manner. He selected a glass tube about a quarter of an inch in diameter and 4 ft. long, and hermetically sealed one of its ends; he then filled it with mercury and, applying his finger to the open end, inverted it in a basin containing mercury. The mercury instantly sank to nearly 30 in. above the surface of the mercury in the basin, leaving in the top of the tube an apparent vacuum, which is now called the Torricellian vacuum; this experiment is sometimes known as the Torricellian experiment. Torricelli's views rapidly gained ground, notwithstanding the objections of certain philosophers. Valuable confirmation was afforded by the variation of the barometric column at different elevations. Rene Descartes and Blaise Pascal predicted a fall in the height when the barometer was carried to the top of a mountain, since, the pressure of the atmosphere being diminished, it necessarily followed that the column of mercury sustained by the atmosphere would be diminished also. This was experimentally observed by Pascal's brother-in-law, Florin Perier (1605-1672), who measured the height of the mercury column at various altitudes on the Puy de Dome. Pascal himself tried the experiment at several towers in Paris, - Notre Dame, St Jacques de la Boucherie, &c. The results of his researches were embodied in his treatises De l'equilibre des liqueurs and De la pesanteur de la masse d'air, which were written before 1651, but were not published till 1663 after his death. Corroboration was also affordedby Marin Mersenne and Christiaan Huygens. It was not long before it was discovered that the height of the column varied at the same place, and that a rise or fall was accompanied by meteorological changes. The instrument thus came to be used as a means of predicting the weather, and it was frequently known as the weather-glass. The relation of the barometric pressure to the weather is mentioned by Robert Boyle, who expressed the opinion that it is exceedingly difficult to draw any correct conclusions. Edmund Halley, Leibnitz, Jean Andre Deluc (1727-1817) and many others investigated this subject, giving rules for predicting the weather and attempting explanations for the phenomena. Since the height of the barometric column varies with the elevation of the station at which it is observed, it follows that observations of the barometer afford a means for measuring altitudes. The early experiments of Pascal were developed by Edmund Halley, Edme Mariotte, J. Cassini, D. Bernoulli, and more especially by Deluc in his Recherches sur les modifications de l'atmosphere (1772), which contains a full account of the early history of the barometer and its applications. More highly mathematical investigations have been given by Laplace, and also by Richard Riihlmann (Barometrischen Hohenmessung., Leipzig, 1870). The modern aspects of the relation between atmospheric pressure and the weather and altitudes are treated in the article Meteorology.

Many attempts have been made by which the variation in the height of the mercury column could be magnified, and so more exact measurements taken. It is not possible to enumerate in this article the many devices which have been proposed; and the reader is referred to Charles Hutton's Mathematical and Philosophical Dictionary (1815), William Ellis's paper on the history of the barometer in the Quarterly Journal of the Royal Meteorological Society, vol. xii. (1886), and E. Gerland and F. Traumiiller's Geschichte der physikalischen Experimentierkunst (1899). Descartes suggested a method which Huygens put into practice. The barometer tube was expanded into a cylindrical vessel at the top, and into this chamber a fine tube partly filled with water was inserted. A slight motion of the mercury occasioned a larger displacement of the water, and hence the changes in the barometric pressure were more readily detected and estimated. But the instrument failed as all water-barometers do, for the gases dissolved in the water coupled with its high vapour tension destroy its efficacy. The substitution of methyl salicylate for the water has been attended with success. Its low vapour tension (Sir William Ramsay and Sydney Young give no value below 70° C.), its low specific gravity (1.18 at 10° C.), its freedom from viscosity, have contributed to its successful use. In the form patented by C. O. Bartrum it is claimed that readings to o01 of an inch of mercury can be taken without the use of a vernier.

The diagonal barometer, in which the upper part of the tube is inclined to the lower part, was suggested by Bernardo Ramazzini (1633-1714), and also by Sir Samuel Morland (or Moreland). This form has many defects, and even when the tube is bent through 45° the readings are only increased in the ratio of 7 to 5. The wheel barometer of Dr R. Hooke, and the steel-yard barometer, endeavour to magnify the oscillation of the mercury column by means of a float resting on the surface of the mercury in the cistern; the motion of the float due to any alteration in the level of the mercury being rendered apparent by a change in the position of the wheel or steel-yard. The pendant barometer of G. Amontons, invented in 1695, consists of a funnel-shaped tube, which is hung vertically with the wide end downwards and closed in at the upper end. The tube contains mercury which adjusts itself in the tube so that the length of the column balances the atmospheric pressure. The instability of this instrument is obvious, for any jar would cause the mercury to leave the tube.

The Siphon Barometer (fig. I) consists of a tube bent in the form of a siphon, and is of the same diameter throughout. A graduated scale passes along the whole length of the tube, and the height of the barometer is ascertained by taking the difference of the readings of the upper and lower limbs respectively. This instrument may also be read by bringing the zero-point of the graduated scale to the level of the surface of the lower limb by means of a screw, and reading off the height at once from the surface of the upper limb. This barometer requires no correction for errors of capillarity or capacity. Since, however, impurities are contracted by the mercury in the lower limb, which is usually in open contact with the air, the satisfactory working of the instrument comes soon to be seriously interfered with.

Fig. 2 shows the Cistern Barometer in its essential and simplest form. This barometer is subject to two kinds of error, the one arising from capillarity, and the other from changes in the level of the surface of the cistern as the mercury rises and falls in the tube, the latter being technically called the error of capacity. If of small bore be plunged into a vessel containing mercury, it will be observed that the level of the mercury in the tube is not in the line of that of the mercury in the vessel, but somewhat below it, and that the surface is convex. The capillary depression is inversely proportional to the diameter of the tube. In standard barometers, the tube is about an inch in diameter, and the error due to capillarity is less than ooi of an inch. Since capillarity depresses the height of the column, cistern barometers require an addition to be made to the observed height, in order to give the true pressure, the amount depending, of course, on the diameter of the tube.

The error of capacity arises in this way. The height of the barometer is the perpendicular distance between the surface of the mercury in the cistern and the upper surface of the mercurial column. Now, when the barometer falls from 30 to 29 inches, an inch of mercury must flow out of the tube and pass into the cistern, thus raising the cistern level; and, on the other hand, when the barometer rises, mercury must flow out of the cistern into the tube, thus lowering the level of the mercury in the cistern. Since the scales of barometers are usually engraved on their brass cases, which are fixed (and, consequently, the zeropoint from which the scale is graduated is also fixed), it follows that, from the incessant changes in the level of the cistern, the readings would be sometimes too high and sometimes too low, if no provision were made against this source of error.

A simple way of correcting the error of capacity is - to ascertain (1) the neutral point of the instrument, or that height at which the zero of the scale is exactly at the height of the surface of the cistern, and (2) the rate of error as the barometer rises or falls above this point, and then apply a correction proportional to this rate. The instrument in which the error of capacity is satisfactorily (indeed, entirely) got rid of is Fortin's Barometer. Fig. 3 shows how this is effected. The upper part F°n's of the cistern is formed of a glass cylinder, through which the level of the mercury may be seen. The bottom is made like a bag, of flexible leather, against which a screw works. At the top of the interior of the cistern is a small piece of ivory, the point of which coincides with the zero of the scale. By means of the screw, which acts on the flexible cistern bottom, the level of the mercury can be raised or depressed so as to bring the ivory point exactly to the surface of the mercury in the cistern. In some barometers the cistern is fixed, and the ivory point is brought to the level of the mercury in the cistern by raising or depressing the scale.

In constructing the best barometers three materials are employed, viz.: - (1) brass, for the case, on which the scale is engraved; (2) glass, for the tube containing the mercury; and (3) the mercury itself. It is evident that if the coefficient of expansion of mercury and brass were the same, the height of the mercury as indicated by the brass scale would be the true height of the mercurial column. But this is not the case, the coefficient of expansion for mercury being considerably greater than that for brass. The result is that if a barometer stand at 30 in. when the temperature of the whole instrument, mercury and brass, is 32°, it will no longer stand at 30 in. if the temperature be raised to 69°; in fact, it wil' then stand at 30.1 in. This increase in the height of the column by the tenth of an inch is not due to any increase of pressure, but altogether to the greater expansion of the mercury at the higher temperature, as compared Correc= with the expansion of the brass case with the engraved scale by which the height is measured. In order, therefore, to compare with each other with exactness barometric observations made at different temperatures, it is necessary to reduce them to the heights at which they would stand at some uniform temperature. The temperature to which such observations are reduced is 32° Fahr. or o° cent.

If English units be used (Fahrenheit degrees and inches), this correction is given by the formula x= - H o 9 000 56, in the centigrade-centimetre system the correction is 0001614 HT (H being the observed height and T the observed temperature). Devices have been invented which determine these corrections mechanically, and hence obviate the necessity of applying the above formula, or of referring to tables in which these corrections for any height of the column and any temperature are given.

The standard temperature of the English yard being 62° and not 32°, it will be found in working out the corrections from the above formula that the temperature of no correction is not 32° but 28.5°. If the scale be engraved on the glass tube, or if the instrument be furnished with a glass scale or with a wooden scale, different corrections are required. These may be worked out from the above formula by substituting for the coefficient of the expansion of brass that of glass, which is assumed to be o 0000-0498, or that of wood, which is assumed to be o. Wood, however, should not be used, its expansion with temperature being unsteady, as well as uncertain.

If the brass scale be attached to a wooden frame and be free to move up and down the frame, as is the case with many siphon barometers, the corrections for brass scales are to be used, since the zero-point of the scale is brought to the level of the lower limb; but if the brass scale be fixed to a wooden frame, the corrections for brass scales are only applicable provided the zero of the scale be fixed at (or nearly at) the zero line of the column, and be free to expand upwards. In siphon barometers, with which an observation is made from two readings on the scale, the FIG. I. Barometer.


a glass tube FIG. 2. Barometer.

FIG. 3. - Fortin's Barometer.

scale must be free to expand in one direction. Again, if only the upper part of the scale, say from 27 to 31 in., be screwed to a wooden frame, it is evident that not the corrections for brass scales, but those for wooden scales must be used. No account need be taken of the expansion of the glass tube containing the mercury, it being evident that no correction for this expansion is required in the case of any barometer the height of which is measured from the surface of the mercury in the cistern.

In fixing a barometer for observation, it is indispensable that it be hung in a perpendicular position, seeing that it is the perpendicular distance between the surface of the mercury in the cistern and the top of the column which S' p is the true height of the barometer. The surface of the mercury column is convex, and in noting the height of the barometer, it is not the chord of the curve, but its tangent which is taken. This is done by setting the straight lower edge of the vernier, an appendage with which the barometer is furnished, as a tangent to the curve. The vernier is made to slide up and down the scale, and by it the height of the barometer may be read true to 0 002 or even to o ooi in.

It is essential that the barometer is at the temperature shown by the attached thermometer. No observation can be regarded as good if the thermometer indicates a temperature differing from that of the whole instrument by more than a degree. For every degree of temperature the attached thermometer differs from the barometer, the observation will be faulty to the extent of about 0.003 in., which in discussions of diurnal range, &c., is a serious amount.

Before being used, barometers should be thoroughly examined as to the state of the mercury, the size of cistern (so as to admit of low readings), and their agreement with some known standard instrument at different points of the scale. The pressure of the atmosphere is not expressed by the weight of the mercury sustained in the tube by it, but by the perpendicular height of the column. Thus, when the height of the column is 30 in., it is not said that the atmospheric pressure is 14.7 lb on the square inch, or the weight of the mercury filling a tube at that height whose transverse section equals a square inch, but that it is 30 in., meaning that the pressure will sustain a column of mercury of that height.

It is essential in gasometry to fix upon some standard pressure to which all measurements can be reduced. The height of the standard mercury column commonly used is 76 cms. (29.922 in.) of pure mercury at 0'; this is near the average height of the barometer. Since the actual force exerted by the atmosphere varies with the intensity of gravity, and therefore with the position on the earth's surface, a place must be specified in defining the standard pressure. This may be avoided by expressing the force as the pressure in dynes due to a column of mercury, one square centimetre in section, which is supported by the atmosphere. If H cms. be the height at o°, and g the value of gravity, the pressure is 13.596 Hg dynes (13.596 being the density of mercury). At Greenwich, where g= 981 17, the standard pressure at o° is 1,013,800 dynes. At Paris the pressure is 1,013,600 dynes. The closeness of this unit to a mega-dyne (a million dynes) has led to the suggestion that a mega-dyne per square centimetre should be adopted as the standard pressure, and it has been adopted by some modern writers on account of its convenience of calculation and independence of locality.

The height of the barometer is expressed in English inches in England and America, but the metric system is used in all scientific work excepting in meteorology. In France and most European countries, the height is given in millimetres, a millimetre being the thousandth part of a metre, which equals 39.37079 English inches. Up to 1869 the barometer was given in half-lines in Russia, which, equalling the twentieth of an English inch, were readily reduced to English inches by dividing by 20. The metric barometric scale is now used in Russia. In a few European countries the French or Paris line, equalling 0.088814 in., is sometimes used. The English measure of length being a standard at 62° Fahr., the old French measure at 61 2°, and the metric scale at 32°, it is necessary, before comparing observations made with the three barometers, to reduce them to the same temperature, so as to neutralize the inequalities arising from the expansion of the scales by heat.

The sympiezometer was invented in 1818 by Adie of Edinburgh. It is a revived form of Hooke's marine barometer. It consists of a glass tube, with a small chamber at the top and an open cistern below. The upper part of the tube ometeir is filled with air, and the lower part and cistern with glycerin. When atmospheric pressure is increased, the air is compressed by the rising of the fluid; but when it is diminished the fluid falls, and the contained air expands. To correct for the error arising from the increased pressure of the contained air when its temperature varies, a thermometer and sliding-scale are added, so that the instrument may be adjusted to the temperature at each observation. It is a sensitive instrument, and well suited for rough purposes at sea and for travelling, but not for exact observation. It has long been superseded by the Aneroid, which far exceeds it in handiness.

Aneroid Barometer

Much obscurity surrounds the invention of barometers in which variations in pressure are rendered apparent by the alteration in the volume of an elastic chamber. The credit of the invention is usually given to Lucien Vidie, who patented his instrument in 1845, but similar instruments were in use much earlier. Thus in 1799 Nicolas Jacques Conte (1 755180 5), director of the aerostatical school at Meudon, and a man of many parts - a chemist, mechanician and painter, - devised an instrument in which the lid of the metal chamber was supported by internal springs; this instrument was employed during the Egyptian campaign for measuring the altitudes of the war-balloons. Although Vidie patented his device in 1845, the FIG. 4. - Aneroid Barometer. commercial manufacture of aneroids only followed after E. Bourdon's patent of the metallic manometer in 1849, when Bourdon and Richard placed about io,000 aneroids on the market. The production was stopped by an action taken by Vidie against Bourdon for infringing the former's patent, and in 1858 Vidie obtained 25,000 francs (--?1000) damages.

Fig. 4 represents the internal construction, as seen when the face is removed, but with the hand still attached, of an aneroid which differs only slightly from Vidie's form. a is a flat circular metallic box, having its upper and under surfaces corrugated in concentric circles. This box or chamber being partially exhausted of air, through the short tube b, which i's subsequently made air-tight by soldering, constitutes a spring, which is affected by every variation of pressure in the external atmosphere, the corrugations on its surface increasing its elasticity. At the centre of the upper surface of the exhausted chamber there is a solid cylindrical projection x, to the top of which the principal lever cde is attached. This lever rests partly on a spiral spring at d; it is also supported by two vertical pins, with perfect freedom of motion. The end e of the lever is attached to a second or small lever f, from which a chain g extends to h, where it works on a drum attached to the axis of the hand, connected with a hair spring at h, changing the motion from vertical to horizontal, and regulating the hand, the attachments of which are made to the metallic plate i. The motion originates in the corrugated elastic box a, the surface of which is depressed or elevated as the weight of the atmosphere is increased or diminished, and this motion is communicated through the levers to the axis of the hand at h. The spiral spring on which the lever rests at d is intended to compensate for the effects of alterations of temperature. The actual movement at the centre of the exhausted box, whence the indications emanate, is very slight, but by the action of the levers is multiplied 657 times at the point of the hand, so that a movement of the 220th part of an inch in the box carries the point of the hand through three inches on the dial. The effect of this combination is to multiply the smallest degrees of atmospheric pressure, so as to render them sensible on the index. Vidie's instrument has been improved by Vaudet and Hulot. Eugene Bourdon's aneroid depends on the same principle. The aneroid requires, however, to be repeatedly compared with a mercurial barometer, being liable to changes from the elasticity of the metal chamber changing, or from changes in the system of levers which work the pointer. Though aneroids are constructed showing great accuracy in their indications, yet none can lay any claim to the exactness of mercurial barometers. The mechanism is liable to get fouled and otherwise go out of order, so that they may change o 30o in. in a few weeks, or even indicate pressure so inaccurately and so irregularly that no confidence can be placed in them for even a few days, if the means of comparing them with a mercurial barometer be not at hand.

The mercurial barometer can be made self-registering by concentrating the rays from a source of light by a lens, so that they strike the top of the mercurial column, and having. a sheet of sensitized paper attached to a frame and placed behind a screen, with a narrow vertical slit in the line of the rays. The mercury being opaque throws a part of the paper in the shade, while above the mercury the rays from the lamp pass unobstructed to the paper. The paper being carried steadily round on a drum at a given rate per hour, the height of the column of mercury is photographed continuously on the paper. From the photograph the height of the barometer at any instant may be taken. The principle of the aneroid barometer has been applied to the construction of barographs. The lever attached to the collapsible chamber terminates in an ink-fed style which records the pressure of the atmosphere on a moving ribbon. In all continuously registering barometers, however, it is necessary, as a check, to make eye-observations with a mercury standard barometer hanging near the registering barometer from four to eight times daily.

See Marvin, Barometers and the Measurement of Atmospheric Pressure (1901); and C. Abbe, Meteorological Apparatus (1888). Reference may also be made to B. Stewart and W. W. H. Gee, Practical Physics (vol. i. 1901), for the construction of standard barometers, their corrections and method of reading.

<< Baroda

Barometric light >>


Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

See also barometer


German Wikipedia has an article on:

Wikipedia de


Barometer n. (genitive Barometers, plural Barometer)

  1. barometer (instrument for measuring atmospheric pressure)

Simple English

An aneroid barometer
A mercury barometer of 1890

Barometer is an instrument used to measure air pressure. The barometer measures air pressure in units called hectopascals (hPa). Air pressure and differences in pressure are important ways to describe or measure weather. Therefore the barometer is important for meteorologists.

There are various types of barometers such as the water barometer, aneroid barometer, and the mercury barometer. They were created by an Italian mathematician named Evangelista Torricelli in 1643. They were also used for measuring altitude, or height above the ground, such as the height of a mountain, and they were often used to measure altitude aboard a hot air balloon. They were also used by miners in caves to determine the depth of a mine. The most used purpose of the barometer was measuring air pressure. The barometer is a good tool for predicting weather.


Got something to say? Make a comment.
Your name
Your email address