Bee: Wikis

Advertisements
  
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Bee

Include this on your site/blog:

Encyclopedia

From Wikipedia, the free encyclopedia

Bees
Honeybee (Apis mellifera) collecting pollen
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Suborder: Apocrita
Superfamily: Apoidea
(unranked): Anthophila
Families

Andrenidae
Apidae
Colletidae
Dasypodaidae
Halictidae
Megachilidae
Meganomiidae
Melittidae
Stenotritidae

Synonyms

Apiformes

Bees are flying insects closely related to wasps and ants, and are known for their role in pollination and for producing honey and beeswax. Bees are a monophyletic lineage within the superfamily Apoidea, presently classified by the unranked taxon name Anthophila. There are nearly 20,000 known species of bees in seven to nine recognized families,[1] though many are undescribed and the actual number is probably higher. They are found on every continent except Antarctica, in every habitat on the planet that contains insect-pollinated flowering plants.

Contents

Introduction

Bees are adapted for feeding on nectar and pollen, the former primarily as an energy source and the latter primarily for protein and other nutrients. Most pollen is used as food for larvae.

Bees have a long proboscis (a complex "tongue") that enables them to obtain the nectar from flowers. They have antennae almost universally made up of 13 segments in males and 12 in females, as is typical for the superfamily. Bees all have two pairs of wings, the hind pair being the smaller of the two; in a very few species, one sex or caste has relatively short wings that make flight difficult or impossible, but none are wingless.

Morphology of a female honey bee

The smallest bee is Trigona minima, a stingless bee whose workers are about 2.1 mm (5/64") long. The largest bee in the world is Megachile pluto, a leafcutter bee whose females can attain a length of 39 mm (1.5"). Members of the family Halictidae, or sweat bees, are the most common type of bee in the Northern Hemisphere, though they are small and often mistaken for wasps or flies.

The best-known bee species is the European honey bee, which, as its name suggests, produces honey, as do a few other types of bee. Human management of this species is known as beekeeping or apiculture.

Bees are the favorite meal of Merops apiaster, the bee-eater bird. Other common predators are kingbirds, mockingbirds, bee wolves and dragonflies.

Pollination

Bees play an important role in pollinating flowering plants, and are the major type of pollinator in ecosystems that contain flowering plants. Bees either focus on gathering nectar or on gathering pollen depending on demand, especially in social species. Bees gathering nectar may accomplish pollination, but bees that are deliberately gathering pollen are more efficient pollinators. It is estimated that one third of the human food supply depends on insect pollination, most of which is accomplished by bees, especially the domesticated European honey bee. Contract pollination has overtaken the role of honey production for beekeepers in many countries. Monoculture and the massive decline of many bee species (both wild and domesticated) have increasingly caused honey bee keepers to become migratory so that bees can be concentrated in seasonally-varying high-demand areas of pollination.

Most bees are fuzzy and carry an electrostatic charge, which aids in the adherence of pollen. Female bees periodically stop foraging and groom themselves to pack the pollen into the scopa, which is on the legs in most bees, and on the ventral abdomen on others, and modified into specialized pollen baskets on the legs of honey bees and their relatives. Many bees are opportunistic foragers, and will gather pollen from a variety of plants, while others are oligolectic, gathering pollen from only one or a few types of plant. A small number of plants produce nutritious floral oils rather than pollen, which are gathered and used by oligolectic bees. One small subgroup of stingless bees, called "vulture bees," is specialized to feed on carrion, and these are the only bees that do not use plant products as food. Pollen and nectar are usually combined together to form a "provision mass", which is often soupy, but can be firm. It is formed into various shapes (typically spheroid), and stored in a small chamber (a "cell"), with the egg deposited on the mass. The cell is typically sealed after the egg is laid, and the adult and larva never interact directly (a system called "mass provisioning").

In New Zealand scientists discovered that three genera of native bees have evolved to open flower buds of the native mistletoe Peraxilla tetrapetala. The buds cannot open themselves but are visited by birds such as the tui and bellbird which twist the top of the ripe bud. That action releases a mechanism which causes the petals to suddenly spring open, giving access to the nectar and pollen. However, when observing the native bees in the Canterbury province in the South Island, the scientists were astonished to see the bees biting the top off the buds, then pushing with their legs, occasionally popping open the buds to allow the bees to harvest the nectar and pollen, and therefore aid in the pollination of the mistletoe which is in decline in New Zealand. Nowhere else in the world have bees demonstrated ability to open explosive bird-adapted flowers. [2]

Visiting flowers can be a dangerous occupation. Many assassin bugs and crab spiders hide in flowers to capture unwary bees. Other bees are lost to birds in flight. Insecticides used on blooming plants kill many bees, both by direct poisoning and by contamination of their food supply. A honey bee queen may lay 2000 eggs per day during spring buildup, but she also must lay 1000 to 1500 eggs per day during the foraging season, mostly to replace daily casualties, most of which are workers dying of old age. Among solitary and primitively social bees, however, lifetime reproduction is among the lowest of all insects, as it is common for females of such species to produce fewer than 25 offspring.

Two honey bees are collecting pollen from Nightblooming cereus

The population value of bees depends partly on the individual efficiency of the bees, but also on the population itself. Thus while bumblebees have been found to be about ten times more efficient pollinators on cucurbits, the total efficiency of a colony of honey bees is much greater due to greater numbers. Likewise during early spring orchard blossoms, bumblebee populations are limited to only a few queens, and thus are not significant pollinators of early fruit.

Advertisements

Depopulation

In 2007, managed populations of European honey bees experienced substantial declines. This has prompted investigations into the phenomenon amidst great concern over the nature and extent of the losses.[3] One aspect of the problem is believed to be "Colony Collapse Disorder" but many of the losses outside the US are attributed to other causes. Pesticides used to treat seeds, such as Clothianidin and Imidacloprid, may also negatively impact honey bee populations.[4] Other species of bees such as mason bees are increasingly cultured and used to meet the agricultural pollination need.[5]

Native pollinators include bumblebees and solitary bees, which often survive in refuges in wild areas away from agricultural spraying, but may still be poisoned in massive spray programs for mosquitoes, gypsy moths, or other insect pests. Although pesticide use remains a concern, the major problem for wild pollinator populations is the loss of the flower-rich habitat on which they depend for food. Throughout the northern hemisphere, the last 70 or so years has seen an intensification of agricultural systems which has decreased the abundance and diversity of wild flowers.

Evolution

Bees vary tremendously in size. Here a tiny halictid bee is gathering pollen, while a bumblebee behind her gathers nectar from a lily.

Bees, like ants, are a specialized form of wasp. The ancestors of bees were wasps in the family Crabronidae, and therefore predators of other insects. The switch from insect prey to pollen may have resulted from the consumption of prey insects that were flower visitors and were partially covered with pollen when they were fed to the wasp larvae. This same evolutionary scenario has also occurred within the vespoid wasps, where the group known as "pollen wasps" also evolved from predatory ancestors. Up until recently the oldest non-compression bee fossil had been Cretotrigona prisca in New Jersey amber and of Cretaceous age, a meliponine. A recently reported bee fossil, of the genus Melittosphex, is considered "an extinct lineage of pollen-collecting Apoidea sister to the modern bees", and dates from the early Cretaceous (~100 mya).[6] Derived features of its morphology ("apomorphies") place it clearly within the bees, but it retains two unmodified ancestral traits ("plesiomorphies") of the legs (two mid-tibial spurs, and a slender hind basitarsus), indicative of its transitional status.

The earliest animal-pollinated flowers were pollinated by insects such as beetles, so the syndrome of insect pollination was well established before bees first appeared. The novelty is that bees are specialized as pollination agents, with behavioral and physical modifications that specifically enhance pollination, and are generally more efficient at the task than any other pollinating insect such as beetles, flies, butterflies and pollen wasps. The appearance of such floral specialists is believed to have driven the adaptive radiation of the angiosperms, and, in turn, the bees themselves.

Among living bee groups, the "short-tongued" bee family Colletidae has traditionally been considered the most "primitive", and sister taxon to the remainder of the bees. In the 21st century, however, some researchers have claimed that the Dasypodaidae is the basal group, the short, wasp-like mouthparts of colletids being the result of convergent evolution, rather than indicative of a plesiomorphic condition.[1] The issue is still under debate, and the phylogenetic relationships among bee families are poorly understood.

Eusocial and semisocial bees

A honey bee swarm
A European honey bee extracts nectar from an Aster flower

Bees may be solitary or may live in various types of communities. The most advanced of these are eusocial colonies found among the honey bees, bumblebees, and stingless bees. Sociality, of several different types, is believed to have evolved separately many times within the bees.

In some species, groups of cohabiting females may be sisters, and if there is a division of labor within the group, then they are considered semisocial.

If, in addition to a division of labor, the group consists of a mother and her daughters, then the group is called eusocial. The mother is considered the "queen" and the daughters are "workers". These castes may be purely behavioral alternatives, in which case the system is considered "primitively eusocial" (similar to many paper wasps), and if the castes are morphologically discrete, then the system is "highly eusocial".

There are many more species of primitively eusocial bees than highly eusocial bees, but they have rarely been studied. The biology of most such species is almost completely unknown. The vast majority are in the family Halictidae, or "sweat bees". Colonies are typically small, with a dozen or fewer workers, on average. The only physical difference between queens and workers is average size, if they differ at all. Most species have a single season colony cycle, even in the tropics, and only mated females (future queens, or "gynes") hibernate (called diapause). A few species have long active seasons and attain colony sizes in the hundreds. The orchid bees include a number of primitively eusocial species with similar biology. Certain species of allodapine bees (relatives of carpenter bees) also have primitively eusocial colonies, with unusual levels of interaction between the adult bees and the developing brood. This is "progressive provisioning"; a larva's food is supplied gradually as it develops. This system is also seen in honey bees and some bumblebees.

Highly eusocial bees live in colonies. Each colony has a single queen, many workers and, at certain stages in the colony cycle, drones. When humans provide the nest, it is called a hive. A honey bee hive can contain up to 40,000 bees at their annual peak, which occurs in the spring, but usually have fewer.

Bumblebee

Bumblebees

Bumblebees (Bombus terrestris, B. pratorum, et al.) are eusocial in a manner quite similar to the eusocial Vespidae such as hornets. The queen initiates a nest on her own (unlike queens of honey bees and stingless bees which start nests via swarms in the company of a large worker force). Bumblebee colonies typically have from 50 to 200 bees at peak population, which occurs in mid to late summer. Nest architecture is simple, limited by the size of the nest cavity (pre-existing), and colonies are rarely perennial. Bumblebee queens sometimes seek winter safety in honey bee hives, where they are sometimes found dead in the spring by beekeepers, presumably stung to death by the honey bees. It is unknown whether any survive winter in such an environment.

Bumblebees are one of the more important wild pollinators, but have declined significantly in recent decades. In the UK, 2 species have become nationally extinct during the last 75 years while others have been placed on the UK Biodiversity Action Plan as priority species in recognition of the need for conservation action. In 2006 a new charity, the Bumblebee Conservation Trust, was established in order to coordinate efforts to conserve remaining populations through conservation and education.

Stingless bees

Stingless bees are very diverse in behavior, but all are highly eusocial. They practice mass provisioning, complex nest architecture, and perennial colonies.

A north-American Honey bee extracting nectar

Honey bees

The true honey bees (genus Apis) have arguably the most complex social behavior among the bees. The European (or Western) honey bee, Apis mellifera, is the best known bee species and one of the best known of all insects.

Africanized honey bee

Africanized bees, also called killer bees, are a hybrid strain of Apis mellifera derived from experiments to cross European and African honey bees by Warwick Estevam Kerr. Several queen bees escaped his laboratory in South America and have spread throughout the Americas. Africanized honey bees are more defensive than European honey bees.

Solitary and communal bees

Most other bees, including familiar species of bee such as the Eastern carpenter bee (Xylocopa virginica), alfalfa leafcutter bee (Megachile rotundata), orchard mason bee (Osmia lignaria) and the hornfaced bee (Osmia cornifrons) are solitary in the sense that every female is fertile, and typically inhabits a nest she constructs herself. There are no worker bees for these species. Solitary bees typically produce neither honey nor beeswax. They are immune from acarine and Varroa mites (see diseases of the honey bee), but have their own unique parasites, pests and diseases.

A solitary bee, Anthidium florentinum (family Megachilidae), visiting Lantana

Solitary bees are important pollinators, and pollen is gathered for provisioning the nest with food for their brood. Often it is mixed with nectar to form a paste-like consistency. Some solitary bees have very advanced types of pollen carrying structures on their bodies. A very few species of solitary bees are being increasingly cultured for commercial pollination.

Solitary bees are often oligoleges, in that they only gather pollen from one or a few species/genera of plants (unlike honey bees and bumblebees which are generalists). No known bees are nectar specialists; many oligolectic bees will visit multiple plants for nectar, but there are no bees which visit only one plant for nectar while also gathering pollen from many different sources. Specialist pollinators also include bee species that gather floral oils instead of pollen, and male orchid bees, which gather aromatic compounds from orchids (one of the only cases where male bees are effective pollinators). In a very few cases only one species of bee can effectively pollinate a plant species, and some plants are endangered at least in part because their pollinator is dying off. There is, however, a pronounced tendency for oligolectic bees to be associated with common, widespread plants which are visited by multiple pollinators (e.g., there are some 40 oligoleges associated with creosote bush in the US desert southwest,[7] and a similar pattern is seen in sunflowers, asters, mesquite, etc.)

Solitary bees create nests in hollow reeds or twigs, holes in wood, or, most commonly, in tunnels in the ground. The female typically creates a compartment (a "cell") with an egg and some provisions for the resulting larva, then seals it off. A nest may consist of numerous cells. When the nest is in wood, usually the last (those closer to the entrance) contain eggs that will become males. The adult does not provide care for the brood once the egg is laid, and usually dies after making one or more nests. The males typically emerge first and are ready for mating when the females emerge. Providing nest boxes for solitary bees is increasingly popular for gardeners. Solitary bees are either stingless or very unlikely to sting (only in self defense, if ever).

A bee on a cornel

While solitary females each make individual nests, some species are gregarious, preferring to make nests near others of the same species, giving the appearance to the casual observer that they are social. Large groups of solitary bee nests are called aggregations, to distinguish them from colonies.

In some species, multiple females share a common nest, but each makes and provisions her own cells independently. This type of group is called "communal" and is not uncommon. The primary advantage appears to be that a nest entrance is easier to defend from predators and parasites when there are multiple females using that same entrance on a regular basis.

Cleptoparasitic bees

Cleptoparasitic bees, commonly called "cuckoo bees" because their behavior is similar to cuckoo birds, occur in several bee families, though the name is technically best applied to the apid subfamily Nomadinae. Females of these bees lack pollen collecting structures (the scopa) and do not construct their own nests. They typically enter the nests of pollen collecting species, and lay their eggs in cells provisioned by the host bee. When the cuckoo bee larva hatches it consumes the host larva's pollen ball, and if the female cleptoparasite has not already done so, kills and eats the host larva. In a few cases where the hosts are social species, the cleptoparasite remains in the host nest and lays many eggs, sometimes even killing the host queen and replacing her.

Many cleptoparasitic bees are closely related to, and resemble, their hosts in looks and size, (i.e., the Bombus subgenus Psithyrus, which are parasitic bumblebees that infiltrate nests of species in other subgenera of Bombus). This common pattern gave rise to the ecological principle known as "Emery's Rule". Others parasitize bees in different families, like Townsendiella, a nomadine apid, one species of which is a cleptoparasite of the dasypodaid genus Hesperapis, while the other species in the same genus attack halictid bees.

Nocturnal bees

Four bee families (Andrenidae, Colletidae, Halictidae, and Apidae) contain some species that are crepuscular (these may be either the vespertine or matinal type). These bees have greatly enlarged ocelli, which are extremely sensitive to light and dark, though incapable of forming images. Many are pollinators of flowers that themselves are crepuscular, such as evening primroses, and some live in desert habitats where daytime temperatures are extremely high.

Bee flight

Bee in mid air flight carrying pollen in pollen basket

In his 1934 French book Le vol des insectes, M. Magnan wrote that he and a Mr. Saint-Lague had applied the equations of air resistance to bumblebees and found that their flight could not be explained by fixed-wing calculations, but that "One shouldn't be surprised that the results of the calculations don't square with reality".[8] This has led to a common misconception that bees "violate aerodynamic theory", but in fact it merely confirms that bees do not engage in fixed-wing flight, and that their flight is explained by other mechanics, such as those used by helicopters.[9]

In 1996 Charlie Ellington at Cambridge University showed that vortices created by many insects’ wings and non-linear effects were a vital source of lift;[10] vortices and non-linear phenomena are notoriously difficult areas of hydrodynamics, which has made for slow progress in theoretical understanding of insect flight.

In 2005 Michael Dickinson and his Caltech colleagues studied honey bee flight with the assistance of high-speed cinematography[11] and a giant robotic mock-up of a bee wing.[12] Their analysis revealed sufficient lift was generated by "the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency". Wing beat frequency normally increases as size decreases, but as the bee's wing beat covers such a small arc, it flaps approximately 230 times per second, faster than a fruitfly (200 times per second) which is 80 times smaller.[13]

Bees and humans

Bees figure prominently in mythology and have been used by political theorists as a model for human society. Journalist Bee Wilson states that the image of a community of honey bees "occurs from ancient to modern times, in Aristotle and Plato; in Virgil and Seneca; in Erasmus and Shakespeare; Tolstoy, as well as by social theorists Bernard Mandeville and Karl Marx."[14]

Despite the honey bee's painful sting and the stereotype of insects as pests, bees are generally held in high regard. This is most likely due to their usefulness as pollinators and as producers of honey, their social nature, and their reputation for diligence. Bees are one of the few insects regularly used on advertisements, being used to illustrate honey and foods made with honey (such as Honey Nut Cheerios).

Bee larvae as food in Java.

In North America, yellowjackets and hornets, especially when encountered as flying pests, are often misidentified as bees, despite numerous differences between them - see Characteristics of common wasps and bees. Although a bee sting can be deadly to those with allergies, virtually all bee species are non-aggressive if undisturbed and many cannot sting at all. Humans are often a greater danger to bees, as bees can be affected or even harmed by encounters with toxic chemicals in the environment - see Bees and toxic chemicals.

In Indonesia bee larvae are eaten as accompanion to rice, after mixed with shredded coconut "meat", wrapped in banana leaves, and steamed.

Gallery

See also

References

  1. ^ a b Danforth BN, Sipes S, Fang J, Brady SG (October 2006). "The history of early bee diversification based on five genes plus morphology". Proc. Natl. Acad. Sci. U.S.A. 103 (41): 15118–23. doi:10.1073/pnas.0604033103. PMID 17015826.  
  2. ^ New Zealand Science Monthly, Native Bees With New Tricks accessdate= 16 June 2009
  3. ^ "Honey bees in US facing extinction", Telegraph 14 March 2007
  4. ^ German Consumer Protection Agency Bulletin June 9, 2008
  5. ^ Mason bee from Everything.About. Retrieved 10 March 2009.
  6. ^ Poinar GO, Danforth BN (October 2006). "A fossil bee from Early Cretaceous Burmese amber". Science 314 (5799): 614. doi:10.1126/science.1134103. PMID 17068254.  
  7. ^ Hurd, P.D. Jr., Linsley, E.G. (1975). "The principal Larrea bees of the southwestern United States.". Smithsonian Contributions to Zoology 193: 1–74.  
  8. ^ Ingram, Jay The Barmaid's Brain, Aurum Press, 2001, pp. 91-92.
  9. ^ Cecil Adams (1990-05-04). "Is it aerodynamically impossible for bumblebees to fly?". The Straight Dope. http://www.straightdope.com/columns/read/1076/is-it-aerodynamically-impossible-for-bumblebees-to-fly. Retrieved 2009-03-07.  
  10. ^ Secrets of bee flight revealed, Phillips, Helen. 28 November 2005. Retrieved 2007-12-28.
  11. ^ "www.newscientist.com/data/images/ns/av/dn8382.avi". http://www.newscientist.com/data/images/ns/av/dn8382.avi.  
  12. ^ Deciphering the Mystery of Bee Flight Caltech Media Relations. Nov. 29, 2005. Retrieved 2007, 4-7.
  13. ^ Douglas L. Altshuler, William B. Dickson, Jason T. Vance, Stephen P. Roberts, and Michael H. Dickinson (2005). "Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight". Proc Natl Acad Sci U S A. 102: 18213–18218. doi:10.1073/pnas.0506590102. PMID 16330767.  
  14. ^ Wilson, Bee (2004). The Hive: The Story Of The Honeybee. London, Great Britain: John Murray (publisher). ISBN 0 7195 6598 7.  

External links


Source material

Up to date as of January 22, 2010
(Redirected to The Bee article)

From Wikisource

The Bee
disambiguation
This is a disambiguation page, which lists works which share the same title. If an article link referred you here, please consider editing it to point directly to the intended page.


The Bee may refer to:


1911 encyclopedia

Up to date as of January 14, 2010
(Redirected to Database error article)

From LoveToKnow 1911

(There is currently no text in this page)


Bible wiki

Up to date as of January 23, 2010

From BibleWiki

First mentioned in Deut 1:44. Swarms of bees, and the danger of their attacks, are mentioned in Ps 11812. Samson found a "swarm of bees" in the carcass of a lion he had slain (Jdg 14:8). Wild bees are described as laying up honey in woods and in clefts of rocks (Deut 32:13; Ps 8116). In Isa 7:18 the "fly" and the "bee" are personifications of the Egyptians and Assyrians, the inveterate enemies of Israel.

This entry includes text from Easton's Bible Dictionary, 1897.

A honey-gathering insect frequently referred to in the Bible. Bee-keeping dates very far back, and it is quite probable that the ancient Hebrews were engaged in it, although there is no direct testimony on the subject either in the Old or in the New Testament. Isa 7:18 is usually quoted in evidence, and the phrase "the Lord shall hiss . . . for the bee" is explained as a technical term of apiculture, meaning to entice the bees to the hive; but the correctness of this supposition may be questioned. It would be more justifiable to quote 2Chr 31:5, where reference is made to the first-fruits of honey. Philo is the first to mention beekeeping, and the Talmud often refers to it. Whatever age, therefore, is to be assigned to apicultureamong the Hebrews, in any case wild bees abounded in Palestine; the phrase "the land flowing with milk and honey" (Ex 3:8) vouches for this fact. In Gen 43:11, and also in Ezek 27:17, honey is named as an article of export; and in other passages of the Old Testament the abundance of wild honey is often spoken of (Deut 32:13; Jdg 14:8; 1Sam 14:25 et seq.; Ps 8117 [A. V. 16]; Prov 25:16; Mt 3:4). In Hebrew cookery, honey plays an important part (see Honey). The Bee is also often mentioned; and a swarm of wild bees is compared to a hostile army (Deut 1:44; Isa 7:18 et seq.; Ps 1182). The small, unpretentious work of the Bee, that yet gives such sweet produce, is praised in Ecclus. (Sirach) xi. 3; compare the sentence added in the Septuagint to Prov 6:8, where much the same is said of the Bee as the Hebrew text says of the ant. From the word "Bee" is derived the popular name "Deborah" (Bee). To-day apiculture is carried on to a considerable extent in Palestine, and not only is Palestinian honey exported in large quantities to Europe and America, but even the bees of Palestine are sent to other countries. The beehives consist of hollow cylinders, made of earth mixed with chopped straw, about 39 inches long and ten inches wide. The beehives in ancient times could hardly have been more primitive.

Bibliography: Tristram, Natural History of the Bible, pp. 322-326; Hart, Animals of the Bible, pp. 32-33.

This entry includes text from the Jewish Encyclopedia, 1906.

Simple English

Bees
File:Bees Collecting Pollen
A honey bee
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Superfamily: Apoidea
Family: Andrenidae
Apidae
Colletidae
Halictidae
Megachilidae
Melittidae
Stenotritidae

Bees are flying insects of the Order Hymenoptera, which also includes ants, wasps and sawflies. There are about 20,000 species of bees.[1] Bees collect pollen from flowers. Bees can be found on all continents except Antarctica.

Bees fall into four groups:

The European honey bee (called Apis mellifera by biologists), are kept by humans for honey. Keeping bees to make honey is called beekeeping, or apiculture.

Contents

Evolution

The earliest animal-pollinated flowers were pollinated by insects such as beetles, long before bees first appeared. Bees are different because they are specialized as pollination agents, with behavioral and physical modifications that make pollination easier. Bees are generally better at the task than other pollinating insects such as beetles, flies, butterflies and pollen wasps. The appearance of such floral specialists is believed to have driven the adaptive radiation of the angiosperms, and, in turn, the bees themselves.

Bees, like ants, are a specialized form of wasp. The ancestors of bees were wasps in a family which preyed on other insects. The switch from insect prey to pollen may have resulted from the capture of prey insects that were covered with pollen when they were fed to the wasp larvae. Similar behaviour could be switched to pollen collection. This same evolutionary scenario has occurred within the vespoid wasps, where the group known as "pollen wasps" also evolved from predatory ancestors.

A recently reported bee fossil, of the genus Melittosphex, is considered "an extinct lineage of pollen-collecting Apoidea, sister-group to the modern bees", and dates from the Lower Cretaceous (~100 mya).[2] Features of its morphology place it clearly within the bees, but it retains two unmodified ancestral traits of the legs which betray its origin.[3] The issue is still under debate, and the phylogenetic relationships among bee families are poorly understood.

Bee bodies

Like other insects, the body of a bee can be divided into three parts: the head, thorax (the middle part), and abdomen (the back part). Also like other insects, bees have three pairs of legs and two pairs of wings. Many bees are hairy and have yellow and black or orange and black warning colors.

Many bees have stings (like a hollow needle) on the rear of their bodies. If they get confused, angry, or scared they may sting, and inject venom, which hurts. Once a worker bee has stung it dies after a short while, but other types of bee and wasp can sting again. Some people are allergic to bee stings and can even die from them.

Social bees

Some bees are eusocial insects; this means they live in organized groups called colonies. Honey bees, the kind of bee used in beekeeping, are eusocial. The home of a bee colony is called a hive.

There are three kinds of bees in a honey bee colony. A queen bee is the most important bee in the colony because she will lay the eggs. The queen bee only uses her stinger to sting other queen bees. The queen is usually the mother of the worker bees. She ate a special jelly called royal jelly from when she was young. Worker bees are females too, and they are the bees that collect pollen from flowers and will fight to protect the colony. Drone bees (males) mate with the queen bee so that she can lay eggs. The only real purpose of the male drone is to mate. They do no other work in the hive.

Other pages

References

  1. James, Rosalind. "Bee pollination in agriculture". http://books.google.com/books?id=jMuShwtyem0C&pg=PA145&lpg=PA145&dq=bee+species+20000&source=bl&ots=7RSbMW34tw&sig=oi55RU7zUtDzmAFKdwBU73k60J4&hl=en&ei=SLmiSpHDE4yd4gaqzsXvCQ&sa=X&oi=book_result&ct=result&resnum=4#v=onepage&q=bee%20species%2020000&f=false. Retrieved 2009-09-05. 
  2. Poinar G.O. & Danforth B.N. (October 2006). [Expression error: Unexpected < operator "A fossil bee from Early Cretaceous Burmese amber"]. Science 314 (5799): 614. doi:10.1126/science.1134103. PMID 17068254. 
  3. Danforth BN, Sipes S, Fang J, Brady SG (October 2006). [Expression error: Unexpected < operator "The history of early bee diversification based on five genes plus morphology"]. Proc. Natl. Acad. Sci. U.S.A. 103 (41): 15118–23. doi:10.1073/pnas.0604033103. PMID 17015826. 
Look up Hymenoptera in Wikispecies, a directory of species
Error creating thumbnail: sh: convert: command not found
Wikimedia Commons has media related to:

bjn:Wanyi


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message