The Full Wiki

Beta-2 adrenergic receptor: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Adrenergic, beta-2-, receptor, surface

Crystallographic structure of the β2-adrenergic receptor depicted as a green cartoon and the bound partial inverse agonist carazolol ligand as spheres (carbon atom = grey, oxygen = red, nitrogen = blue). The phospholipid bilayer is depicted as blue spheres (phosphate head groups) and yellow lines (lipid sidechains).[1][2]
External IDs OMIM109690 MGI87938 HomoloGene30948 IUPHAR: β2-adrenoceptor GeneCards: ADRB2 Gene
RNA expression pattern
PBB GE ADRB2 206170 at tn.png
More reference expression data
Species Human Mouse
Entrez 154 11555
Ensembl ENSG00000169252 ENSMUSG00000045730
UniProt P07550 Q8BH38
RefSeq (mRNA) NM_000024 NM_007420
RefSeq (protein) NP_000015 NP_031446
Location (UCSC) Chr 5:
148.19 - 148.19 Mb
Chr 18:
62.3 - 62.31 Mb
PubMed search [1] [2]

The beta-2 adrenergic receptor2 adrenoreceptor), also known as ADRB2, is a beta-adrenergic receptor, and also denotes the human gene encoding it.[3]



The ADRB2 gene is intronless. Different polymorphic forms, point mutations, and/or downregulation of this gene are associated with nocturnal asthma, obesity and type 2 diabetes.[4]


The 3D crystallographic structure (see figure to the right) of the β2-adrenergic receptor has been determined (PDB 2R4R, 2R4S, 2RH1).[5][1][2]


This receptor is directly associated with one of its ultimate effectors, the class C L-type calcium channel CaV1.2. This receptor-channel complex is coupled to the Gs G protein, which activates adenylyl cyclase, protein kinase A, and the counterbalancing phosphatase PP2A. The assembly of the signaling complex provides a mechanism that ensures specific and rapid signaling. A two-state biophysical and molecular model has been proposed to account for the pH and REDOX sensitivity of this and other GPCRs.[6]

Beta-2 Adrenergic Receptors have also been found to couple with Gi, possibly providing a mechanism by which response to ligand is highly localized within cells. In contrast, Beta-1 Adrenergic Receptors are coupled only to Gs, and stimulation of these results in a more diffuse cellular response.[7] This appears to be mediated by cAMP induced PKA phosphorylation of the receptor.[8]


Actions of the β2 receptor include:


Muscular system

Tissue/Effect Function

Smooth muscle relaxation in:


GI tract (decreases motility) Delay digestion during fight-or-flight response

detrusor urinae muscle‎ of bladder wall[9] This effect is stronger than the alpha-1 receptor effect of contraction.

Delay need of micturition
seminal tract[10]
bronchi[11] Facilitate respiration (agonists can be useful in treating asthma)
Increase perfusion of organs needed during fight-or-flight
striated muscle Tremor[10] (via PKA mediated facilitation of presynaptic Ca2+ influx leading to acetylcholine release)
Increased mass and contraction speed[10] fight-or-flight
glycogenolysis[10] provide glucose fuel

Circulatory system


In the normal eye, beta-2 stimulation by salbutamol reduces intraocular pressure via net:

In glaucoma, drainage is reduced (in open-angle glaucoma) or blocked completely (closed-angle glaucoma). In such cases, beta-2 stimulation with its consequent increase in humour production is highly contra-indicated, and conversely, a topical beta-2 antagonist such as timolol may be employed.

Digestive system




(Beta blockers)

* denotes selective agonists to the receptor.

See also


Beta-2 adrenergic receptor has been shown to interact with Delta Opioid receptor,[14] Sodium-hydrogen antiporter 3 regulator 1,[15][16][17] AKAP12[18][19] and Grb2.[20]


  1. ^ a b PDB 2RH1; Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007). "High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor". Science 318 (5854): 1258–65. doi:10.1126/science.1150577. PMID 17962520.  
  2. ^ a b Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007). "GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function". Science 318 (5854): 1266–73. doi:10.1126/science.1150609. PMID 17962519.  
  3. ^ "Entrez Gene: ADRB1 adrenergic, beta-1-, receptor".  
  4. ^ "Entrez Gene: ADRB2 adrenergic, beta-2-, receptor, surface".  
  5. ^ Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007). "Crystal structure of the human β2-adrenergic G-protein-coupled receptor". Nature 450 (7168): 383–7. doi:10.1038/nature06325. PMID 17952055.  
  6. ^ Rubenstein LA, Zauhar RJ, Lanzara RG (2006). "Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation". J. Mol. Graph. Model. 25 (4): 396–409. doi:10.1016/j.jmgm.2006.02.008. PMID 16574446.  
  7. ^ Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H, Lakatta EG (November 2000). "G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels". Biophys. J. 79 (5): 2547–56. doi:10.1016/S0006-3495(00)76495-2. PMID 11053129.  
  8. ^ Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ (August 2002). "Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system". J. Biol. Chem. 277 (34): 31249–56. doi:10.1074/jbc.M202753200. PMID 12063255.  
  9. ^ von Heyden B, Riemer RK, Nunes L, Brock GB, Lue TF, Tanagho EA (1995). "Response of guinea pig smooth and striated urethral sphincter to cromakalim, prazosin, nifedipine, nitroprusside, and electrical stimulation". Neurourol. Urodyn. 14 (2): 153–68. doi:10.1002/nau.1930140208. PMID 7540086.  
  10. ^ a b c d e Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4.   Page 163
  11. ^ a b c d e f g Fitzpatrick, David; Purves, Dale; Augustine, George (2004). "Table 20:2". Neuroscience (Third ed.). Sunderland, Mass: Sinauer. ISBN 0-87893-725-0.  
  12. ^ Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4.   Page 270
  13. ^ Trovik TS, Vaartun A, Jorde R, Sager G (1995). "Dysfunction in the beta 2-adrenergic signal pathway in patients with insulin dependent diabetes mellitus (IDDM) and unawareness of hypoglycaemia". Eur. J. Clin. Pharmacol. 48 (5): 327–32. doi:10.1007/BF00194946. PMID 8641318.  
  14. ^ McVey, M; Ramsay D, Kellett E, Rees S, Wilson S, Pope A J, Milligan G (Apr. 2001). "Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy". J. Biol. Chem. (United States) 276 (17): 14092–9. doi:10.1074/jbc.M008902200. ISSN 0021-9258. PMID 11278447.  
  15. ^ Karthikeyan, Subramanian; Leung Teli, Ladias John A A (May. 2002). "Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors". J. Biol. Chem. (United States) 277 (21): 18973–8. doi:10.1074/jbc.M201507200. ISSN 0021-9258. PMID 11882663.  
  16. ^ Hall, R A; Ostedgaard L S, Premont R T, Blitzer J T, Rahman N, Welsh M J, Lefkowitz R J (Jul. 1998). "A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins". Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 95 (15): 8496–501. ISSN 0027-8424. PMID 9671706.  
  17. ^ Hall, R A; Premont R T, Chow C W, Blitzer J T, Pitcher J A, Claing A, Stoffel R H, Barak L S, Shenolikar S, Weinman E J, Grinstein S, Lefkowitz R J (Apr. 1998). "The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange". Nature (ENGLAND) 392 (6676): 626–30. doi:10.1038/33458. ISSN 0028-0836. PMID 9560162.  
  18. ^ Fan, G; Shumay E, Wang H, Malbon C C (Jun. 2001). "The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta 2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization". J. Biol. Chem. (United States) 276 (26): 24005–14. doi:10.1074/jbc.M011199200. ISSN 0021-9258. PMID 11309381.  
  19. ^ Shih, M; Lin F, Scott J D, Wang H Y, Malbon C C (Jan. 1999). "Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin". J. Biol. Chem. (UNITED STATES) 274 (3): 1588–95. ISSN 0021-9258. PMID 9880537.  
  20. ^ Karoor, V; Wang L, Wang H Y, Malbon C C (Dec. 1998). "Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350". J. Biol. Chem. (UNITED STATES) 273 (49): 33035–41. ISSN 0021-9258. PMID 9830057.  

External links

Further reading

  • Frielle T, Caron MG, Lefkowitz RJ (1989). "Properties of the beta 1- and beta 2-adrenergic receptor subtypes revealed by molecular cloning.". Clin. Chem. 35 (5): 721–5. PMID 2541947.  
  • Taylor DR, Kennedy MA (2002). "Genetic variation of the beta(2)-adrenoceptor: its functional and clinical importance in bronchial asthma.". American journal of pharmacogenomics : genomics-related research in drug development and clinical practice 1 (3): 165–74. PMID 12083965.  
  • Thibonnier M, Coles P, Thibonnier A, Shoham M (2002). "Molecular pharmacology and modeling of vasopressin receptors.". Prog. Brain Res. 139: 179–96. doi:10.1016/S0079-6123(02)39016-2. PMID 12436935.  
  • Ge D, Huang J, He J, et al. (2005). "beta2-Adrenergic receptor gene variations associated with stage-2 hypertension in northern Han Chinese.". Ann. Hum. Genet. 69 (Pt 1): 36–44. doi:10.1046/j.1529-8817.2003.00093.x. PMID 15638826.  
  • Muszkat M (2007). "Interethnic differences in drug response: the contribution of genetic variability in beta adrenergic receptor and cytochrome P4502C9.". Clin. Pharmacol. Ther. 82 (2): 215–8. doi:10.1038/sj.clpt.6100142. PMID 17329986.  
  • Bucens D, Pain MC (1976). "Influence of hematocrit, blood gas tensions, and pH on pressure-flow relations in the isolated canine lung.". Circ. Res. 37 (5): 588–96. PMID 154.  
  • von Zastrow M, Kobilka BK (1992). "Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors.". J. Biol. Chem. 267 (5): 3530–8. PMID 1371121.  
  • Gope R, Gope ML, Thorson A, et al. (1992). "Genetic changes at the beta-2-adrenergic receptor locus on chromosome 5 in human colorectal carcinomas.". Anticancer Res. 11 (6): 2047–50. PMID 1663718.  
  • Bouvier M, Guilbault N, Bonin H (1991). "Phorbol-ester-induced phosphorylation of the beta 2-adrenergic receptor decreases its coupling to Gs.". FEBS Lett. 279 (2): 243–8. doi:10.1016/0014-5793(91)80159-Z. PMID 1848190.  
  • Yang-Feng TL, Xue FY, Zhong WW, et al. (1990). "Chromosomal organization of adrenergic receptor genes.". Proc. Natl. Acad. Sci. U.S.A. 87 (4): 1516–20. doi:10.1073/pnas.87.4.1516. PMID 2154750.  
  • Hui KK, Yu JL (1989). "Effects of protein kinase inhibitor, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, on beta-2 adrenergic receptor activation and desensitization in intact human lymphocytes.". J. Pharmacol. Exp. Ther. 249 (2): 492–8. PMID 2470898.  
  • Hen R, Axel R, Obici S (1989). "Activation of the beta 2-adrenergic receptor promotes growth and differentiation in thyroid cells.". Proc. Natl. Acad. Sci. U.S.A. 86 (12): 4785–8. doi:10.1073/pnas.86.12.4785. PMID 2471981.  
  • O'Dowd BF, Hnatowich M, Caron MG, et al. (1989). "Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor.". J. Biol. Chem. 264 (13): 7564–9. PMID 2540197.  
  • Bristow MR, Hershberger RE, Port JD, et al. (1989). "Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium.". Mol. Pharmacol. 35 (3): 295–303. PMID 2564629.  
  • Emorine LJ, Marullo S, Delavier-Klutchko C, et al. (1987). "Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization.". Proc. Natl. Acad. Sci. U.S.A. 84 (20): 6995–9. doi:10.1073/pnas.84.20.6995. PMID 2823249.  
  • Chung FZ, Wang CD, Potter PC, et al. (1988). "Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation.". J. Biol. Chem. 263 (9): 4052–5. PMID 2831218.  
  • Yang SD, Fong YL, Benovic JL, et al. (1988). "Dephosphorylation of the beta 2-adrenergic receptor and rhodopsin by latent phosphatase 2.". J. Biol. Chem. 263 (18): 8856–8. PMID 2837466.  
  • Kobilka BK, Dixon RA, Frielle T, et al. (1987). "cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor.". Proc. Natl. Acad. Sci. U.S.A. 84 (1): 46–50. doi:10.1073/pnas.84.1.46. PMID 3025863.  
  • Chung FZ, Lentes KU, Gocayne J, et al. (1987). "Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.". FEBS Lett. 211 (2): 200–6. doi:10.1016/0014-5793(87)81436-9. PMID 3026848.  


Got something to say? Make a comment.
Your name
Your email address