Bioinformatics: Wikis

Advertisements
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Map of the human X chromosome (from the NCBI website). Assembly of the human genome is one of the greatest achievements of bioinformatics.

Bioinformatics is the application of information technology and computer science to the field of molecular biology. The term bioinformatics was coined by Paulien Hogeweg in 1979 for the study of informatic processes in biotic systems. Its primary use since at least the late 1980s has been in genomics and genetics, particularly in those areas of genomics involving large-scale DNA sequencing. Bioinformatics now entails the creation and advancement of databases, algorithms, computational and statistical techniques, and theory to solve formal and practical problems arising from the management and analysis of biological data. Over the past few decades rapid developments in genomic and other molecular research technologies and developments in information technologies have combined to produce a tremendous amount of information related to molecular biology. It is the name given to these mathematical and computing approaches used to glean understanding of biological processes. Common activities in bioinformatics include mapping and analyzing DNA and protein sequences, aligning different DNA and protein sequences to compare them and creating and viewing 3-D models of protein structures.

The primary goal of bioinformatics is to increase our understanding of biological processes. What sets it apart from other approaches, however, is its focus on developing and applying computationally intensive techniques (e.g., pattern recognition, data mining, machine learning algorithms, and visualization) to achieve this goal. Major research efforts in the field include sequence alignment, gene finding, genome assembly, drug design, drug discovery, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, genome-wide association studies and the modeling of evolution.

Contents

Introduction

Bioinformatics was applied in the creation and maintenance of a database to store biological information at the beginning of the "genomic revolution", such as nucleotide and amino acid sequences. Development of this type of database involved not only design issues but the development of complex interfaces whereby researchers could both access existing data as well as submit new or revised data.

In order to study how normal cellular activities are altered in different disease states, the biological data must be combined to form a comprehensive picture of these activities. Therefore, the field of bioinformatics has evolved such that the most pressing task now involves the analysis and interpretation of various types of data, including nucleotide and amino acid sequences, protein domains, and protein structures. The actual process of analyzing and interpreting data is referred to as computational biology. Important sub-disciplines within bioinformatics and computational biology include:

a) the development and implementation of tools that enable efficient access to, and use and management of, various types of information. b) the development of new algorithms (mathematical formulas) and statistics with which to assess relationships among members of large data sets, such as methods to locate a gene within a sequence, predict protein structure and/or function, and cluster protein sequences into families of related sequences.

Major research areas

Advertisements

Sequence analysis

Since the Phage Φ-X174 was sequenced in 1977, the DNA sequences of thousands of organisms have been decoded and stored in databases. This sequence information is analyzed to determine genes that encode polypeptides (proteins), RNA genes, regulatory sequences, structural motifs, and repetitive sequences. A comparison of genes within a species or between different species can show similarities between protein functions, or relations between species (the use of molecular systematics to construct phylogenetic trees). With the growing amount of data, it long ago became impractical to analyze DNA sequences manually. Today, computer programs such as BLAST are used daily to search the genomes of thousands of organisms, containing billions of nucleotides. These programs can compensate for mutations (exchanged, deleted or inserted bases) in the DNA sequence, in order to identify sequences that are related, but not identical. A variant of this sequence alignment is used in the sequencing process itself. The so-called shotgun sequencing technique (which was used, for example, by The Institute for Genomic Research to sequence the first bacterial genome, Haemophilus influenzae) does not produce entire chromosomes, but instead generates the sequences of many thousands of small DNA fragments (ranging from 35 to 900 nucleotides long, depending on the sequencing technology). The ends of these fragments overlap and, when aligned properly by a genome assembly program, can be used to reconstruct the complete genome. Shotgun sequencing yields sequence data quickly, but the task of assembling the fragments can be quite complicated for larger genomes. For a genome as large as the human genome, it may take many days of CPU time on large-memory, multiprocessor computers to assemble the fragments, and the resulting assembly will usually contain numerous gaps that have to be filled in later. Shotgun sequencing is the method of choice for virtually all genomes sequenced today, and genome assembly algorithms are a critical area of bioinformatics research.

Another aspect of bioinformatics in sequence analysis is annotation, which involves computational gene finding to search for protein-coding genes, RNA genes, and other functional sequences within a genome. Not all of the nucleotides within a genome are genes. Within the genome of higher organisms, large parts of the DNA do not serve any obvious purpose. This so-called junk DNA may, however, contain unrecognized functional elements. Bioinformatics helps to bridge the gap between genome and proteome projects--for example, in the use of DNA sequences for protein identification.

Genome annotation

In the context of genomics, annotation is the process of marking the genes and other biological features in a DNA sequence. The first genome annotation software system was designed in 1995 by Dr. Owen White, who was part of the team at The Institute for Genomic Research that sequenced and analyzed the first genome of a free-living organism to be decoded, the bacterium Haemophilus influenzae. Dr. White built a software system to find the genes (places in the DNA sequence that encode a protein), the transfer RNA, and other features, and to make initial assignments of function to those genes. Most current genome annotation systems work similarly, but the programs available for analysis of genomic DNA are constantly changing and improving.

Computational evolutionary biology

Evolutionary biology is the study of the origin and descent of species, as well as their change over time. Informatics has assisted evolutionary biologists in several key ways; it has enabled researchers to:

  • trace the evolution of a large number of organisms by measuring changes in their DNA, rather than through physical taxonomy or physiological observations alone,
  • more recently, compare entire genomes, which permits the study of more complex evolutionary events, such as gene duplication, horizontal gene transfer, and the prediction of factors important in bacterial speciation,
  • build complex computational models of populations to predict the outcome of the system over time
  • track and share information on an increasingly large number of species and organisms

Future work endeavours to reconstruct the now more complex tree of life.

The area of research within computer science that uses genetic algorithms is sometimes confused with computational evolutionary biology, but the two areas are unrelated.

Analysis of gene expression

The expression of many genes can be determined by measuring mRNA levels with multiple techniques including microarrays, expressed cDNA sequence tag (EST) sequencing, serial analysis of gene expression (SAGE) tag sequencing, massively parallel signature sequencing (MPSS), or various applications of multiplexed in-situ hybridization. All of these techniques are extremely noise-prone and/or subject to bias in the biological measurement, and a major research area in computational biology involves developing statistical tools to separate signal from noise in high-throughput gene expression studies. Such studies are often used to determine the genes implicated in a disorder: one might compare microarray data from cancerous epithelial cells to data from non-cancerous cells to determine the transcripts that are up-regulated and down-regulated in a particular population of cancer cells.

Analysis of regulation

Regulation is the complex orchestration of events starting with an extracellular signal such as a hormone and leading to an increase or decrease in the activity of one or more proteins. Bioinformatics techniques have been applied to explore various steps in this process. For example, promoter analysis involves the identification and study of sequence motifs in the DNA surrounding the coding region of a gene. These motifs influence the extent to which that region is transcribed into mRNA. Expression data can be used to infer gene regulation: one might compare microarray data from a wide variety of states of an organism to form hypotheses about the genes involved in each state. In a single-cell organism, one might compare stages of the cell cycle, along with various stress conditions (heat shock, starvation, etc.). One can then apply clustering algorithms to that expression data to determine which genes are co-expressed. For example, the upstream regions (promoters) of co-expressed genes can be searched for over-represented regulatory elements.

Analysis of protein expression

Protein microarrays and high throughput (HT) mass spectrometry (MS) can provide a snapshot of the proteins present in a biological sample. Bioinformatics is very much involved in making sense of protein microarray and HT MS data; the former approach faces similar problems as with microarrays targeted at mRNA, the latter involves the problem of matching large amounts of mass data against predicted masses from protein sequence databases, and the complicated statistical analysis of samples where multiple, but incomplete peptides from each protein are detected.

Analysis of mutations in cancer

In cancer, the genomes of affected cells are rearranged in complex or even unpredictable ways. Massive sequencing efforts are used to identify previously unknown point mutations in a variety of genes in cancer. Bioinformaticians continue to produce specialized automated systems to manage the sheer volume of sequence data produced, and they create new algorithms and software to compare the sequencing results to the growing collection of human genome sequences and germline polymorphisms. New physical detection technology are employed, such as oligonucleotide microarrays to identify chromosomal gains and losses (called comparative genomic hybridization), and single-nucleotide polymorphism arrays to detect known point mutations. These detection methods simultaneously measure several hundred thousand sites throughout the genome, and when used in high-throughput to measure thousands of samples, generate terabytes of data per experiment. Again the massive amounts and new types of data generate new opportunities for bioinformaticians. The data is often found to contain considerable variability, or noise, and thus Hidden Markov model and change-point analysis methods are being developed to infer real copy number changes.

Another type of data that requires novel informatics development is the analysis of lesions found to be recurrent among many tumors .

Prediction of protein structure

Protein structure prediction is another important application of bioinformatics. The amino acid sequence of a protein, the so-called primary structure, can be easily determined from the sequence on the gene that codes for it. In the vast majority of cases, this primary structure uniquely determines a structure in its native environment. (Of course, there are exceptions, such as the bovine spongiform encephalopathy - aka Mad Cow Disease - prion.) Knowledge of this structure is vital in understanding the function of the protein. For lack of better terms, structural information is usually classified as one of secondary, tertiary and quaternary structure. A viable general solution to such predictions remains an open problem. As of now, most efforts have been directed towards heuristics that work most of the time.

One of the key ideas in bioinformatics is the notion of homology. In the genomic branch of bioinformatics, homology is used to predict the function of a gene: if the sequence of gene A, whose function is known, is homologous to the sequence of gene B, whose function is unknown, one could infer that B may share A's function. In the structural branch of bioinformatics, homology is used to determine which parts of a protein are important in structure formation and interaction with other proteins. In a technique called homology modeling, this information is used to predict the structure of a protein once the structure of a homologous protein is known. This currently remains the only way to predict protein structures reliably.

One example of this is the similar protein homology between hemoglobin in humans and the hemoglobin in legumes (leghemoglobin). Both serve the same purpose of transporting oxygen in the organism. Though both of these proteins have completely different amino acid sequences, their protein structures are virtually identical, which reflects their near identical purposes.

Other techniques for predicting protein structure include protein threading and de novo (from scratch) physics-based modeling.

See also: structural motif and structural domain.

Comparative genomics

The core of comparative genome analysis is the establishment of the correspondence between genes (orthology analysis) or other genomic features in different organisms. It is these intergenomic maps that make it possible to trace the evolutionary processes responsible for the divergence of two genomes. A multitude of evolutionary events acting at various organizational levels shape genome evolution. At the lowest level, point mutations affect individual nucleotides. At a higher level, large chromosomal segments undergo duplication, lateral transfer, inversion, transposition, deletion and insertion. Ultimately, whole genomes are involved in processes of hybridization, polyploidization and endosymbiosis, often leading to rapid speciation. The complexity of genome evolution poses many exciting challenges to developers of mathematical models and algorithms, who have recourse to a spectra of algorithmic, statistical and mathematical techniques, ranging from exact, heuristics, fixed parameter and approximation algorithms for problems based on parsimony models to Markov Chain Monte Carlo algorithms for Bayesian analysis of problems based on probabilistic models.

Many of these studies are based on the homology detection and protein families computation.

Modeling biological systems

Systems biology involves the use of computer simulations of cellular subsystems (such as the networks of metabolites and enzymes which comprise metabolism, signal transduction pathways and gene regulatory networks) to both analyze and visualize the complex connections of these cellular processes. Artificial life or virtual evolution attempts to understand evolutionary processes via the computer simulation of simple (artificial) life forms.

High-throughput image analysis

Computational technologies are used to accelerate or fully automate the processing, quantification and analysis of large amounts of high-information-content biomedical imagery. Modern image analysis systems augment an observer's ability to make measurements from a large or complex set of images, by improving accuracy, objectivity, or speed. A fully developed analysis system may completely replace the observer. Although these systems are not unique to biomedical imagery, biomedical imaging is becoming more important for both diagnostics and research. Some examples are:

  • high-throughput and high-fidelity quantification and sub-cellular localization (high-content screening, cytohistopathology, Bioimage informatics)
  • morphometrics
  • clinical image analysis and visualization
  • determining the real-time air-flow patterns in breathing lungs of living animals
  • quantifying occlusion size in real-time imagery from the development of and recovery during arterial injury
  • making behavioral observations from extended video recordings of laboratory animals
  • infrared measurements for metabolic activity determination
  • inferring clone overlaps in DNA mapping, e.g. the Sulston score

Protein-protein docking

In the last two decades, tens of thousands of protein three-dimensional structures have been determined by X-ray crystallography and Protein nuclear magnetic resonance spectroscopy (protein NMR). One central question for the biological scientist is whether it is practical to predict possible protein-protein interactions only based on these 3D shapes, without doing protein-protein interaction experiments. A variety of methods have been developed to tackle the Protein-protein docking problem, though it seems that there is still much work to be done in this field.

Software and tools

Software tools for bioinformatics range from simple command-line tools, to more complex graphical programs and standalone web-services available from various bioinformatics companies or public institutions.

Web services in bioinformatics

SOAP and REST-based interfaces have been developed for a wide variety of bioinformatics applications allowing an application running on one computer in one part of the world to use algorithms, data and computing resources on servers in other parts of the world. The main advantages derive from the fact that end users do not have to deal with software and database maintenance overheads.

Basic bioinformatics services are classified by the EBI into three categories: SSS (Sequence Search Services), MSA (Multiple Sequence Alignment) and BSA (Biological Sequence Analysis). The availability of these service-oriented bioinformatics resources demonstrate the applicability of web based bioinformatics solutions, and range from a collection of standalone tools with a common data format under a single, standalone or web-based interface, to integrative, distributed and extensible bioinformatics workflow management systems.

See also

References

External links


Study guide

Up to date as of January 14, 2010

From Wikiversity

Crystal Clear app kaddressbook.png
Please help develop this page

This page was created, but so far, little content has been added. Everyone is invited to help expand and create educational content for Wikiversity. If you need help learning how to add content, see the editing tutorial and the MediaWiki syntax reference.

To help you get started with content, we have automatically added references below to other Wikimedia Foundation projects. This will help you find materials such as information, media and quotations on which to base the development of "Bioinformatics" as an educational resource. However, please do not simply copy-and-paste large chunks from other projects. You can also use the links in the blue box to help you classify this page by subject, educational level and resource type.

Wikipedia-logo.png Run a search on Bioinformatics at Wikipedia.
Commons-logo.svg Search Wikimedia Commons for images, sounds and other media related to: Bioinformatics
Wikimedia-logo.svg Search for Bioinformatics on the following projects:
Smiley green alien whatface.svg Lost on Wikiversity? Please help by choosing project boxes to classify this resource by:
  • subject
  • educational level
  • resource type

Welcome to the Department of Bioinformatics

Contents

Department description

The Department of Bioinformatics invites students to use its resources to develop understanding and push forward the boundaries of using computative technologies to research genetics.

Department news

September 7th 2006 - Department opening day!

The next few weeks will see a development in the departmental resources as we move into our new space.

Prerequisite

To understand Bioinformatics it is necessary to know basic computer operation and Molecular Biology. For advanced study it may be necessary to know some Mathematics, Computer Administration, and Computer Programming

Learning materials and learning projects

Wikiversity has adopted the "learning by doing" model for education. Lessons will centre on learning activities for Wikiversity participants. Learning materials and learning projects can be used by multiple departments. This department aims to cooperate with other departments that use the same learning resource.

Sequence alignment exercises

Reference

  • [[[b:Bioinformatics|WikiBook Bioinformatics]]]

Scientific Journals

Journals found at Directory of Open Access Journals

Open Access Journals

Hybrid Access Journals


Wikibooks

Up to date as of January 23, 2010

From Wikibooks, the open-content textbooks collection

Contents

  • Part Three: Biological sequences and biological diversity
    1. Chemical diversity, arising from sequence diversity, allows biological diversity
    2. How biological complexity is expressed in genomic differences
    3. Biological sequence data indicate a common ancestor for all living things
    4. Unique features of biological sequences derived from extremophiles
    5. The genetic origins of oxygen adapted life, mitochondria and chloroplasts
    6. The genetic origins of multi-cellularity
    7. A living species is defined as much by genetic diversity as by the genome of any particular individual
    8. How genetic variability within a species allows for speciation

Simple English

Bioinformatics is the study of large amounts of biological information. Mostly, it focuses on molecules like DNA. It is done mostly with the help of computers.

Foundation

As species of living things change over time, the DNA contained in their cells change, from evolution. If we can extract the information from living things today, and compare them to each other, we can see which living things are most closely related, much like comparing two editions of a book, the most similar can be thought to be the most closely related in time. Doing this, biologists can construct family trees, or phylogenies. By stitching together all the trees, a grand tree connecting all living things can be made, this is called the "Tree of Life".

The process

Anything a cell could possibly want is stored in its DNA. When a cell wants to build a protein, it finds the appropriate piece of DNA, makes a copy of it (called RNA), and uses the instructions in the copy to make the protein.

Proteins are the 'machinery' of a cell. They can perform many functions like transportation, structural support, movement and metabolism. Proteins are made from amino acids. There are twenty different amino acids that are used to build millions of different protein molecules.

The principle of bioinformatics is that these molecules can be studied by using computers to analyze the DNA, RNA, and amino acid sequences from which they are created. Because there are so many different molecules, the best way we have of understanding how the entire system works is to use bioinformatics.

Computers in bioinformatics

Chemists have developed ways to understand the shape and behavior of small molecules, using mathematical analysis. They might use computers (or even just a pencil and paper) to study these molecules. Also, the DNA contained in just one cell of an organism is far too large to be read by any person, and to compare the DNA between two (or more) organisms, be they in the brother and sister, or of a completely different species, requires comparing large amounts of information for small (or large) differences. Computers are far better suited to such comparisons, and computer programmers have worked with biologists to create very very large databases to store all the DNA information that has ever been learned. Biochemists today are trying to answer these questions about every single cell in the body:

  • How does a particular protein bind to another?
  • Which proteins will be built from a specific strand of DNA?
  • How can DNA be used to stop genetic disorders and diseases?
  • How has a cell changed through evolution?
  • What diseases is a person especially vulnerable to, given their genes?


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message