The Full Wiki

Biosynthesis of cocaine: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Chemical structure of cocaine

The first synthesis and elucidation of the cocaine molecule was by Richard Willstätter in 1898.[1] Willstätter's synthesis derived cocaine from tropinone. Since then, Robert Robinson and Edward Leete have made significant contributions to the mechanism of the synthesis.

Contents

Biosynthesis of N-methyl-pyrrolinium cation

The biosynthesis begins with L-Glutamine, which is derived to L-ornithine in plants. The major contribution of L-ornithine and L-arginine as a precursor to the tropane ring was confirmed by Edward Leete.[2] Ornithine then undergoes a Pyridoxal phosphate-dependent decarboxylation to form putrescine. In animals, however, the urea cycle derives putrescine from ornithine. L-ornithine is converted to L-arginine,[3] which is then decarboxylated via PLP to form agmatine. Hydrolysis of the imine derives N-carbamoylputrescine followed with hydrolysis of the urea to form putrescine. The separate pathways of converting ornithine to putrescine in plants and animals have converged. A SAM-dependent N-methylation of putrescine gives the N-methylputrescine product, which then undergoes oxidative deamination by the action of diamine oxidase to yield the aminoaldehyde. Schiff base formation confirms the biosynthesis of the N-methyl-Δ1-pyrrolinium cation.

Biosynthesis of N-methyl-pyrrolinium cation

Biosynthesis of cocaine

The additional carbon atoms required for the synthesis of cocaine are derived from acetyl-CoA, by addition of two acetyl-CoA units to the N-methyl-Δ1-pyrrolinium cation [4]. The first addition is a Mannich-like reaction with the enolate anion from acetyl-CoA acting as a nucleophile towards the pyrrolinium cation. The second addition occurs through a Claisen condensation. This produces a racemic mixture of the 2-substituted pyrrolidine, with the retention of the thioester from the Claisen condensation. In formation of tropinone from racemic ethyl [2,3-13C2]4(Nmethyl- 2-pyrrolidinyl)-3-oxobutanoate there is no preference for either stereoisomer [5]. In the biosynthesis of cocaine, however, only the (S)-enantiomer can cyclize to form the tropane ring system of cocaine. The stereoselectivity of this reaction was further investigated through study of prochiral methylene hydrogen discrimination [6]. This is due to the extra chiral center at C-2 [7]. This process occurs through an oxidation, which regenerates the pyrrolinium cation and formation of an enolate anion, and an intramolecular Mannich reaction. The tropane ring system undergoes hydrolysis, SAM-dependent methylation, and reduction via NADPH for the formation of methylecgonine. The benzoyl moiety required for the formation of the cocaine diester is synthesized from phenylalanine via cinnamic acid [8]. Benzoyl-CoA then combines the two units to form cocaine.

Biosynthesis of cocaine

Robert Robinson's acetonedicarboxylate

The biosynthesis of the tropane alkaloid, however, is still uncertain. Hemscheidt proposes that Robinson's acetonedicarboxylate emerges as a potential intermediate for this reaction [9]. Condensation of N-methylpyrrolinium and acetonedicarboxylate would generate the oxobutyrate. Decarboxylation leads to tropane alkaloid formation.

Robinson biosynthesis of tropane

Reduction of tropinone

The reduction of tropinone is mediated by NADPH-dependent reductase enzymes, which have been characterized in multiple plant species [10]. These plant species all contain two types of the reductase enzymes, tropinone reductase I and tropinone reductase II. TRI produces tropine and TRII produces pseudotropine. Due to differing kinetic and pH/activity characteristics of the enzymes and by the 25-fold higher activity of TRI over TRII, the majority of the tropinone reduction is from TRI to form tropine [11].

Reduction of tropinone

References

  1. ^ Humphrey AJ, O'Hagan D (October 2001). "Tropane alkaloid biosynthesis. A century old problem unresolved". Nat Prod Rep 18 (5): 494–502. PMID 11699882. 
  2. ^ Leete E, Marion L, Sspenser ID (October 1954). "Biogenesis of hyoscyamine". Nature 174 (4431): 650–1. PMID 13203600. 
  3. ^ Robins RJ, Waltons NJ, Hamill JD, Parr AJ, Rhodes MJ (October 1991). "Strategies for the genetic manipulation of alkaloid-producing pathways in plants". Planta Med. 57 (7 Suppl): S27–35. doi:10.1055/s-2006-960226. PMID 17226220. 
  4. ^ Dewick, P. M. (2009). Medicinal Natural Products. Chicester: Wiley-Blackwell. ISBN 978-0-4707-4276-1. 
  5. ^ R. J. Robins, T. W. Abraham, A. J. Parr, J. Eagles and N. J. Walton (1997). "The Biosynthesis of Tropane Alkaloids in Datura stramonium: The Identity of the Intermediates between N-Methylpyrrolinium Salt and Tropinone". J. Am. Chem. Soc. 119: 10929. doi:10.1021/ja964461p. 
  6. ^ Hoye TR, Bjorklund JA, Koltun DO, Renner MK (January 2000). "N-methylputrescine oxidation during cocaine biosynthesis: study of prochiral methylene hydrogen discrimination using the remote isotope method". Org. Lett. 2 (1): 3–5. PMID 10814231. 
  7. ^ E. Leete, J. A. Bjorklund, M. M. Couladis and S. H. Kim (1991). "Late intermediates in the biosynthesis of cocaine: 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoate and methyl ecgonine". J. Am. Chem. Soc. 113: 9286. doi:10.1021/ja00024a039. 
  8. ^ E. Leete, J. A. Bjorklund and S. H. Kim (1988). "The biosynthesis of the benzoyl moiety of cocaine". Phytochemistry 27: 2553. doi:10.1016/0031-9422(88)87026-2. 
  9. ^ T. Hemscheidt (2000). "Tropane and Related Alkaloids". Top. Curr. Chem. 209: 175. doi:10.1007/3-540-48146-X. 
  10. ^ A. Portsteffen, B. Draeger and A. Nahrstedt (1992). "Two tropinone reducing enzymes from Datura stramonium transformed root cultures". Phytochemistry 31: 1135. doi:10.1016/0031-9422(92)80247-C. 
  11. ^ Boswell HD, Dräger B, McLauchlan WR, et al. (November 1999). "Specificities of the enzymes of N-alkyltropane biosynthesis in Brugmansia and Datura". Phytochemistry 52 (5): 871–8. PMID 10626376. 







Got something to say? Make a comment.
Your name
Your email address
Message