The Full Wiki

Blast furnaces: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

(Redirected to Blast furnace article)

From Wikipedia, the free encyclopedia

Blast furnace in Sestao, Spain. The actual furnace itself is inside the centre girderwork.

A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally iron.

In a blast furnace, fuel and ore are continuously supplied through the top of the furnace, while air (sometimes with oxygen enrichment) is blown into the bottom of the chamber, so that the chemical reactions take place throughout the furnace as the material moves downward. The end products are usually molten metal and slag phases tapped from the bottom, and flue gases exiting from the top of the furnace.

Blast furnaces are to be contrasted with air furnaces (such as reverberatory furnaces), which were naturally aspirated, usually by the convection of hot gases in a chimney flue. According to this broad definition, bloomeries for iron, blowing houses for tin, and smelt mills for lead, would be classified as blast furnaces. However, the term has usually been limited to those used for smelting iron ore to produce pig iron, an intermediate material used in the production of commercial iron and steel.

Contents

History

Blast furnaces existed in China from about the 5th century BC, and in the West from the High Middle Ages. They spread from the region around Namur in Wallonia (Belgium) in the late 15th century, being introduced to England in 1491. The fuel used in these was invariably charcoal. The successful substitution of coke for charcoal is widely attributed to Abraham Darby in 1709. The efficiency of the process was further enhanced by the practice of preheating the blast, patented by James Beaumont Neilson in 1828.

The blast furnace is distinguished from the bloomery in that the object of the blast furnace is to produce molten metal that can be tapped from the furnace, whereas the intention in the bloomery is to avoid it melting so that carbon does not become dissolved in the iron. Bloomeries were also artificially blown using bellows, but the term "blast furnace" is normally reserved for furnaces where iron (or other metals) are refined from ore.

Advertisements

China

An illustration of furnace bellows operated by waterwheels, from the Nong Shu, by Wang Zhen, 1313 AD, during the Yuan Dynasty of China.

The oldest extant blast furnaces were built during the Han Dynasty of China in the 1st century BC. However, cast iron farm tools and weapons were widespread in China by the 5th century BC,[1] while 3rd century BC iron smelters employed an average workforce of over two hundred men.[1] These early furnaces had clay walls and used phosphorus-containing minerals as a flux.[2] The effectiveness of the Chinese blast furnace was enhanced during this period by the engineer Du Shi (c. 31 AD), who applied the power of waterwheels to piston-bellows in forging cast iron.[3]

The left picture illustrates the fining process to make wrought iron from pig iron, with the right illustration displaying men working a blast furnace, of smelting iron ore producing pig iron, from the Tiangong Kaiwu encyclopedia, 1637.

While it was long thought that the Chinese had developed the blast furnace and cast iron as their first method of iron production, Donald Wagner (the author of the above referenced study) has published a more recent paper[4] that supersedes some of the statements in the earlier work; the newer paper still places the date of the first cast iron artifacts at the 4th and 5th century BC, but also provides evidence of earlier bloomery furnace use, which migrated in from the west during the beginning of the Chinese Bronze Age of the late Longshan culture (2000 BC). He suggests that early blast furnace and cast iron production evolved from furnaces used to melt bronze. Certainly, though, iron was essential to military success by the time the State of Qin had unified China (221 BC). By the 11th century, the Song Dynasty Chinese iron industry made a remarkable switch of resources from charcoal to bituminous coal in casting iron and steel, sparing thousands of acres of woodland from felling. This may have happened as early as the 4th century AD.[5][6]

Ancient World elsewhere

Other than in China, there is no evidence of the use of the blast furnace (proper). Instead iron was made by direct reduction in bloomeries. These are not correctly described as blast furnaces, though the term is occasionally misused in referring to them.

In Europe, the Greeks, Celts, Romans, and Carthaginians all used this process. Several examples have been found in France, and materials found in Tunisia suggest they were used there as well as in Antioch during the Hellenistic Period. Though little is known of it during the Dark Ages, the process probably continued in use. Similarly, smelting in bloomery-type furnaces in Kush and West Africa goes a similar distance back.[7]

Medieval Europe

An improved bloomery, named the Catalan forge, was invented in Catalonia, Spain during the 8th century. Instead of using natural draught, air was pumped in by bellows, resulting in better quality iron and an increased capacity. This pumping of airstream in with bellows is known as cold blast, and it increases the fuel efficiency of the bloomery and improves yield. The Catalan forges can also be built bigger than natural draught bloomeries.

Modern experimental archaeology and history re-enactment has shown there is only a very short step from Catalan forge to the true blast furnace, where the iron is gained as pig iron in liquid phase. Usually obtaining the iron in liquid phase is actually undesired and the temperature is intentionally kept below the melting point of iron, since while removing the solid bloom mechanically is tedious and means batch process instead of continuous process, it is almost pure iron and can be worked immediately. On the other hand, pig iron is the eutectic mixture of carbon and iron, and needs to be decarburized to produce steel or wrought iron, which was extremely tedious in the Middle Ages.

The oldest known blast furnaces in the West were built in Dürstel in Switzerland, the Märkische Sauerland in Germany, and at Lapphyttan in Sweden where the complex was active between 1150 and 1350.[8] At Noraskog in the Swedish county of Järnboås there have also been found traces of blast furnaces dated even earlier, possibly to around 1100.[9] These early blast furnaces, like the Chinese examples, were very inefficient compared to those used today. The iron from the Lapphyttan complex was used to produce balls of wrought iron known as osmonds, and these were traded internationally – a possible reference occurs in a treaty with Novgorod from 1203 and several certain references in accounts of English customs from the 1250s and 1320s. Other furnaces of the 13th to 15th centuries have been identified in Westphalia.[10]

Knowledge of certain technological advances was transmitted as a result of the General Chapter of the Cistercian monks. This may have included the blast furnace, as the Cistercians are known to have been skilled metallurgists.[11] According to Jean Gimpel, their high level of industrial technology facilitated the diffusion of new techniques: "Every monastery had a model factory, often as large as the church and only several feet away, and waterpower drove the machinery of the various industries located on its floor." Iron ore deposits were often donated to the monks along with forges to extract the iron, and within time surpluses were being offered for sale. The Cistercians became the leading iron producers in Champagne, France, from the mid-13th century to the 17th century,[12] also using the phosphate-rich slag from their furnaces as an agricultural fertilizer.[13]

Archaeologists are still discovering the extent of Cistercian technology.[14] At Laskill, an outstation of Rievaulx Abbey and the only medieval blast furnace so far identified in Britain, the slag produced was low in iron content.[15] Slag from other furnaces of the time contained a substantial concentration of iron, whereas Laskill is believed to have produced cast iron quite efficiently.[15][16][17] Its date is not yet clear, but it probably did not survive until Henry VIII's Dissolution of the Monasteries in the late 1530s, as an agreement (immediately after that) concerning the "smythes" with the Earl of Rutland in 1541 refers to blooms.[18] Nevertheless, the means by which the blast furnace spread in medieval Europe has not finally been determined.

Early modern blast furnaces: origin and spread

Luisenhuette at Balve

The direct ancestor of these used in France and England was in the Namur region in what is now Wallonia (Belgium). From there, they spread first to the Pays de Bray on the eastern boundary of Normandy and from there to the Weald of Sussex, where the first furnace (called Queenstock) in Buxted was built in about 1491, followed by one at Newbridge in Ashdown Forest in 1496. They remained few in number until about 1530 but many were built in the following decades in the Weald, where the iron industry perhaps reached its peak about 1590. Most of the pig iron from these furnaces was taken to finery forges for the production of bar iron.[19]

The first British furnaces outside the Weald appeared during the 1550s, and many were built in the remainder of that century and the following ones. The output of the industry probably peaked about 1620, and was followed by a slow decline until the early 18th century. This was apparently because it was more economic to import iron from Sweden and elsewhere than to make it in some more remote British locations. Charcoal that was economically available to the industry was probably being consumed as fast as the wood to make it grew.[20]

The first blast furnace in Russia opened in 1637 near Tula and was called the Gorodishche Works. The blast furnace spread from here to the central Russia and then finally to the Urals.[21]

Blast furnaces have also been discovered and recorded to have been created in medieval West Africa with some of the metalworking Bantu civilizations such as the Bunyoro Empire and the Nyoro people.[22]

Representation of blast furnaces and other ironmaking processes from the 19th century

Coke blast furnaces

In 1709, at Coalbrookdale in Shropshire, England, Abraham Darby began to fuel a blast furnace with coke instead of charcoal. Coke iron was initially only used for foundry work, making pots and other cast iron goods. Foundry work was a minor branch of the industry, but Darby's son built a new furnace at nearby Horsehay, and began to supply the owners of finery forges with coke pig iron for the production of bar iron. Coke pig iron was by this time cheaper to produce than charcoal pig iron. The use of a coal-derived fuel in the iron industry was a key factor in the British Industrial Revolution.[23][24][25] Darby's old blast furnace has been archaeologically excavated and can be seen in situ at Coalbrookdale, part of the Ironbridge Gorge Museums.

A further important development was the change to hot blast, patented by James Beaumont Neilson at Wilsontown Ironworks in Scotland in 1828. This further reduced production costs. Within a few decades, the practice was to have a "stove" as large as the furnace next to it into which the waste gas (containing CO) from the furnace was directed and burnt. The resultant heat was used to preheat the air blown into the furnace.[26]

A further significant development was the application of raw anthracite coal to the blast furnace, first tried successfully by George Crane at Yniscedwyn ironworks in south Wales in 1837.[27] It was taken up in America by the Lehigh Crane Iron Company at Catasauqua, Pennsylvania in 1839.

Modern furnaces

The blast furnace remains an important part of modern iron production. Modern furnaces are highly efficient, including Cowper stoves to pre-heat the blast air and employ recovery systems to extract the heat from the hot gases exiting the furnace. Competition in industry drives higher production rates. The largest blast furnaces have a volume around 5580 m3 (190,000 cu ft)[28] and can produce around 80,000 tonnes (88,000 short tons) of iron per week.

This is a great increase from the typical 18th-century furnaces, which averaged about 360 tonnes (400 short tons) per year. Variations of the blast furnace, such as the Swedish electric blast furnace, have been developed in countries which have no native coal resources.

Modern process

Blast furnace placed in an installation
Blast furnace diagram
1. Hot blast from Cowper stoves
2. Melting zone (bosh)
3. Reduction zone of ferrous oxide (barrel)
4. Reduction zone of ferric oxide (stack)
5. Pre-heating zone (throat)
6. Feed of ore, limestone, and coke
7. Exhaust gases
8. Column of ore, coke and limestone
9. Removal of slag
10. Tapping of molten pig iron
11. Collection of waste gases

Modern furnaces are equipped with an array of supporting facilities to increase efficiency, such as ore storage yards where barges are unloaded. The raw materials are transferred to the stockhouse complex by ore bridges, or rail hoppers and ore transfer cars. Rail-mounted scale cars or computer controlled weight hoppers weigh out the various raw materials to yield the desired hot metal and slag chemistry. The raw materials are brought to the top of the blast furnace via a skip car powered by winches or conveyor belts.[29]

There are different ways in which the raw materials are charged into the blast furnace. Some blast furnaces use a "double bell" system where two "bells" are used to control the entry of the raw material into the blast furnace. The purpose of the two bells is to minimize the loss of hot gases in the blast furnace. First the raw materials are emptied into the upper or small bell. The bell is then rotated a predetermined amount in order to distribute the charge more accurately. The small bell then opens to empty the charge into the large bell. The small bell then closes, to seal the blast furnace, while the large bell dispenses the charge into the blast furnace.[30][31] A more recent design is to use a "bell-less" system. These systems use multiple hoppers to contain each raw material, which is then discharged into the blast furnace through valves.[30] These valves are more accurate at controlling how much of each constituent is added, as compared to the skip or conveyor system, thereby increasing the efficiency of the furnace. Some of these bell-less systems also implement a chute in order to precisely control where the charge is placed.[32]

The iron making blast furnace itself is built in the form of a tall chimney-like structure lined with refractory brick. Coke, limestone flux, and iron ore (iron oxide) are charged into the top of the furnace in a precise filling order which helps control gas flow and the chemical reactions inside the furnace. Four "uptakes" allow the hot, dirty gas to exit the furnace dome, while "bleeder valves" protect the top of the furnace from sudden gas pressure surges. When plugged, bleeder valves need to be cleaned with a bleeder cleaner. The coarse particles in the gas settle in the "dust catcher" and are dumped into a railroad car or truck for disposal, while the gas itself flows through a venturi scrubber and a gas cooler to reduce the temperature of the cleaned gas.[29]

The "casthouse" at the bottom half of the furnace contains the bustle pipe, tuyeres and the equipment for casting the liquid iron and slag. Once a "taphole" is drilled through the refractory clay plug, liquid iron and slag flow down a trough through a "skimmer" opening, separating the iron and slag. Modern, larger blast furnaces may have as many as four tapholes and two casthouses.[29] Once the pig iron and slag has been tapped, the taphole is again plugged with refractory clay.

The tuyeres are used to implement a hot blast, which is used to increase the efficiency of the blast furnace. The hot blast is directed into the furnace through water-cooled copper nozzles called tuyeres near the base. The hot blast temperature can be from 900 °C to 1300 °C (1600 °F to 2300 °F) depending on the stove design and condition. The temperatures they deal with may be 2000 °C to 2300 °C (3600 °F to 4200 °F). Oil, tar, natural gas, powdered coal and oxygen can also be injected into the furnace at tuyere level to combine with the coke to release additional energy which is necessary to increase productivity.[29]

Chemistry

Blast furnaces of Třinec Iron and Steel Works

The main chemical reaction producing the molten iron is:

Fe2O3 + 3CO → 2Fe + 3CO2[33]

Preheated blast air blown into the furnace reacts with the carbon in the form of coke to produce carbon monoxide and heat. The carbon monoxide then reacts with the iron oxide to produce molten iron and carbon dioxide. Hot carbon dioxide, unreacted carbon monoxide, and nitrogen from the air pass up through the furnace as fresh feed material travels down into the reaction zone. As the material travels downward, the counter-current gases both preheat the feed charge, decompose the limestone to calcium oxide and carbon dioxide, and begin to reduce the iron oxides in the solid state. The main reaction controlling the gas atmosphere in the furnace is called the Boudouard reaction:

C + O2 → CO2[33]
CO2 + C → 2CO[33]

The decomposition of limestone in the middle zones of the furnace proceeds according to the following reaction:

CaCO3 → CaO + CO2[29]

The calcium oxide formed by decomposition reacts with various acidic impurities in the iron (notably silica), to form a fayalitic slag which is essentially calcium silicate, CaSiO3:[33]

SiO2 + CaO → CaSiO3[34]

The "pig iron" produced by the blast furnace has a relatively high carbon content of around 4–5%, making it very brittle, and of limited immediate commercial use. Some pig iron is used to make cast iron. The majority of pig iron produced by blast furnaces undergoes further processing to reduce the carbon content and produce various grades of steel used for tools and construction materials.

Although the efficiency of blast furnaces is constantly evolving, the chemical process inside the blast furnace remains the same. According to the American Iron and Steel Institute: "Blast furnaces will survive into the next millennium because the larger, efficient furnaces can produce hot metal at costs competitive with other iron making technologies."[29] One of the biggest drawbacks of the blast furnaces is the inevitable carbon dioxide production as iron is reduced from iron oxides by carbon and there is no economical substitute – steelmaking is one of the unavoidable industrial contributors of the CO2 emissions in the world (see greenhouse gases).

See also

References

Notes

  1. ^ a b Ebrey, p. 30.
  2. ^ Early iron in China, Korea, and Japan, Donald B. Wagner, March 1993
  3. ^ Needham, Joseph (1986), Science and Civilisation in China, Volume 4: Physics and Physical Technology, Part 2, Mechanical Engineering, Taipei: Cambridge University Press, p. 370, ISBN 0521058031  .
  4. ^ The earliest use of iron in China, Donald B. Wagner, 1999
  5. ^ Donald B. Wagner, 'Chinese blast furnaces from the 10th to the 14th century' Historical Metallurgy 37(1) (2003), 25-37; originally published in West Asian Science, Technology, and Medicine 18 (2001), 41-74.
  6. ^ Ebrey, p. 158.
  7. ^ A History of Sub-Saharan Africa
  8. ^ Archaeological Investigations on the Beginning of Blast Furnace-Technology in Central Europe
  9. ^ A. Wetterholm, 'Blast furnace studies in Nora bergslag' (Örebro universitet 1999, Järn och Samhälle) ISBN 91-7668-204-8
  10. ^ N. Bjökenstam, 'The Blast Furnace in Europe during the Middle Ages: part of a new system for producing wrought iron' in G. Magnusson, The Importance of Ironmaking: Technological Innovation and Social Change I (Jernkontoret, Stockholm 1995), 143–53 and other papers in the same volume.
  11. ^ Woods, p. 34.
  12. ^ Gimpel, p. 67.
  13. ^ Woods, p. 35.
  14. ^ Woods, p. 36.
  15. ^ a b Woods, p. 37.
  16. ^ R. W. Vernon, G. McDonnell and A. Schmidt, 'An integrated geophysical and analytical appraisal of early iron-working: three case studies' Historical Metallurgy 31(2) (1998), pp. 72–5, 79
  17. ^ David Derbyshire, 'Henry "Stamped Out Industrial Revolution"', The Daily Telegraph (21 June 2002); cited by Woods.
  18. ^ Schubert, H. R. (1957), History of the British iron and steel industry from c. 450 BC to AD 1775, Routledge & Kegan Paul, pp. 395–397  .
  19. ^ B. Awty & C. Whittick (with P. Combes), 'The Lordship of Canterbury, iron-founding at Buxted, and the continental antecedents of cannon-founding in the Weald' Sussex Archaeological Collections 140 (2004 for 2002), pp. 71–81.
  20. ^ P. W. King, 'The production and consumption of iron in early modern England and Wales' Economic History Review LVIII(1), 1-33; G. Hammersley, 'The charcoal iron industry and its fuel 1540–1750' Economic History Review Ser. II, XXVI (1973), pp. 593–613.
  21. ^ Yakovlev, V. B. (August 1957). "Development of Wrought Iron Production". Metallurgist (New York: Springer) Volume 1 (Number 8): 545. doi:10.1007/BF00732452. ISSN 0026-0894. http://www.springerlink.com/content/hx515m2689563420/. Retrieved 2008-01-13.  
  22. ^ Iron, Gender, and Power - By Eugenia W. Herbert
  23. ^ Raistrick, Arthur (1953), Dynasty of Iron Founders: The Darbys and Coalbrookedale, York: Longmans, Green  .
  24. ^ Hyde
  25. ^ Trinder, Barrie Stuart; Trinder, Barrie (2000), The Industrial Revolution in Shropshire, Chichester: Phillimore, ISBN 1860771335  .
  26. ^ Birch, pp. 181–9.
  27. ^ Hyde, p. 159.
  28. ^ Made in Ukraine, http://www.madeinua.info/view.aspx?type=ja&lang=2&jaid=261, retrieved 2008-05-20  .
  29. ^ a b c d e f AISI
  30. ^ a b McNeil, Ian (1990), An encyclopaedia of the history of technology, Taylor & Francis, p. 163, ISBN 0415013062, http://books.google.com/books?id=WW4Q-vMA6IMC  .
  31. ^ Strassburger, Julius H. (1969), Blast furnace: Theory and Practice, Taylor & Francis, p. 564, ISBN 0677104200, http://books.google.com/books?id=xLsOAAAAQAAJ  .
  32. ^ Whitfield, Peter (PDF), Design and Operation of a Gimbal Top Charging System, http://www2.sea.siemens.com/NR/rdonlyres/FFA8AF1C-1791-46E8-AA09-917BB28D8701/0/038.pdf, retrieved 2008-06-22  .
  33. ^ a b c d "Blast Furnace". Science Aid. http://www.scienceaid.co.uk/chemistry/industrial/blastfurnace.html. Retrieved 2007-12-30.  
  34. ^ Dr. K. E Lee, Form Two Science (Biology Chemistry Physics)

Bibliography

  • Birch, Alan (2005). The Economic History of the British Iron and Steel Industry, 1784-1879. Routledge. ISBN 0415382483.  
  • Ebrey, Patricia Buckley; Walthall, Anne; Palais, James B. (2005), East Asia: A Cultural, Social, and Political History, Boston: Houghton Mifflin, ISBN 0618133844  .
  • Gimpel, Jean (1976), The Medieval Machine: The Industrial Revolution of the Middle Ages, New York: Holt, Rinehart and Winston, ISBN 0030146364  .
  • Hyde, Charles K. (1977). Technological Change and the British iron industry, 1700-1870. Princeton: Princeton University Press. ISBN 0691052468.  
  • Woods, Thomas (2005). How the Catholic Church Built Western Civilization. Washington, D.C.: Regnery Publ.. ISBN 0-89526-038-7.  

External links


File:Alto horno antiguo
Blast furnace in Sestao, Spain. The actual furnace itself is inside the centre girderwork.

A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally iron.

In a blast furnace, fuel and ore are continuously supplied through the top of the furnace, while air (sometimes with oxygen enrichment) is blown into the bottom of the chamber, so that the chemical reactions take place throughout the furnace as the material moves downward. The end products are usually molten metal and slag phases tapped from the bottom, and flue gases exiting from the top of the furnace.

Blast furnaces are to be contrasted with air furnaces (such as reverberatory furnaces), which were naturally aspirated, usually by the convection of hot gases in a chimney flue. According to this broad definition, bloomeries for iron, blowing houses for tin, and smelt mills for lead, would be classified as blast furnaces. However, the term has usually been limited to those used for smelting iron ore to produce pig iron, an intermediate material used in the production of commercial iron and steel.

Contents

History

Blast furnaces existed in China from about the 5th century BC, and in the West from the High Middle Ages. They spread from the region around Namur in Wallonia (Belgium) in the late 15th century, being introduced to England in 1491. The fuel used in these was invariably charcoal. The successful substitution of coke for charcoal is widely attributed to Abraham Darby in 1709. The efficiency of the process was further enhanced by the practice of preheating the blast, patented by James Beaumont Neilson in 1828.

The blast furnace is distinguished from the bloomery in that the object of the blast furnace is to produce molten metal that can be tapped from the furnace, whereas the intention in the bloomery is to avoid it melting so that carbon does not become dissolved in the iron. Bloomeries were also artificially blown using bellows, but the term "blast furnace" is normally reserved for furnaces where iron (or other metals) are refined from ore.

China

File:Yuan Dynasty - waterwheels and
An illustration of furnace bellows operated by waterwheels, from the Nong Shu, by Wang Zhen, 1313 AD, during the Yuan Dynasty of China.

The oldest extant blast furnaces were built during the Han Dynasty of China in the 1st century BC. However, cast iron farm tools and weapons were widespread in China by the 5th century BC,[1] while 3rd century BC iron smelters employed an average workforce of over two hundred men.[1] These early furnaces had clay walls and used phosphorus-containing minerals as a flux.[2] The effectiveness of the Chinese blast furnace was enhanced during this period by the engineer Du Shi (c. 31 AD), who applied the power of waterwheels to piston-bellows in forging cast iron.[3]

File:Chinese Puddle and Blast
The left picture illustrates the fining process to make wrought iron from pig iron, with the right illustration displaying men working a blast furnace, of smelting iron ore producing pig iron, from the Tiangong Kaiwu encyclopedia, 1637.

While it was long thought that the Chinese had developed the blast furnace and cast iron as their first method of iron production, Donald Wagner (the author of the above referenced study) has published a more recent paper[4] that supersedes some of the statements in the earlier work; the newer paper still places the date of the first cast iron artifacts at the 4th and 5th century BC, but also provides evidence of earlier bloomery furnace use, which migrated in from the west during the beginning of the Chinese Bronze Age of the late Longshan culture (2000 BC). He suggests that early blast furnace and cast iron production evolved from furnaces used to melt bronze. Certainly, though, iron was essential to military success by the time the State of Qin had unified China (221 BC). By the 11th century, the Song Dynasty Chinese iron industry made a remarkable switch of resources from charcoal to bituminous coal in casting iron and steel, sparing thousands of acres of woodland from felling. This may have happened as early as the 4th century AD.[5][6]

Ancient World elsewhere

Other than in China, there is no evidence of the use of the blast furnace (proper). Instead iron was made by direct reduction in bloomeries. These are not correctly described as blast furnaces, though the term is occasionally misused in referring to them.

In Europe, the Greeks, Celts, Romans, and Carthaginians all used this process. Several examples have been found in France, and materials found in Tunisia suggest they were used there as well as in Antioch during the Hellenistic Period. Though little is known of it during the Dark Ages, the process probably continued in use.[citation needed] Similarly, smelting in bloomery-type furnaces in West Africa and forging for tools, appears in Nok civilization in Africa by 500 BC.[7] The earliest records of bloomery-type furnaces in East Africa are discoveries of smelted iron and carbon in Nubia and Axum which date back between 1,000-500 BCE.[8][9] Particularly in Meroe, there are known to have been ancient blast furnaces which produced metal tools for the Nubians/Kushites and produced surplus for their economy.

Medieval Europe

An improved bloomery, named the Catalan forge, was invented in Catalonia, Spain during the 8th century. Instead of using natural draught, air was pumped in by bellows, resulting in better quality iron and an increased capacity. This pumping of airstream in with bellows is known as cold blast, and it increases the fuel efficiency of the bloomery and improves yield. The Catalan forges can also be built bigger than natural draught bloomeries.

Modern experimental archaeology and history re-enactment has shown there is only a very short step from Catalan forge to the true blast furnace, where the iron is gained as pig iron in liquid phase. Usually obtaining the iron in liquid phase is actually undesired and the temperature is intentionally kept below the melting point of iron, since while removing the solid bloom mechanically is tedious and means batch process instead of continuous process, it is almost pure iron and can be worked immediately. On the other hand, pig iron is the eutectic mixture of carbon and iron, and needs to be decarburized to produce steel or wrought iron, which was extremely tedious in the Middle Ages.

The oldest known blast furnaces in the West were built in Dürstel in Switzerland, the Märkische Sauerland in Germany, and at Lapphyttan in Sweden where the complex was active between 1150 and 1350.[10] At Noraskog in the Swedish county of Järnboås there have also been found traces of blast furnaces dated even earlier, possibly to around 1100.[11] These early blast furnaces, like the Chinese examples, were very inefficient compared to those used today. The iron from the Lapphyttan complex was used to produce balls of wrought iron known as osmonds, and these were traded internationally – a possible reference occurs in a treaty with Novgorod from 1203 and several certain references in accounts of English customs from the 1250s and 1320s. Other furnaces of the 13th to 15th centuries have been identified in Westphalia.[12]

Knowledge of certain technological advances was transmitted as a result of the General Chapter of the Cistercian monks. This may have included the blast furnace, as the Cistercians are known to have been skilled metallurgists.[13] According to Jean Gimpel, their high level of industrial technology facilitated the diffusion of new techniques: "Every monastery had a model factory, often as large as the church and only several feet away, and waterpower drove the machinery of the various industries located on its floor." Iron ore deposits were often donated to the monks along with forges to extract the iron, and within time surpluses were being offered for sale. The Cistercians became the leading iron producers in Champagne, France, from the mid-13th century to the 17th century,[14] also using the phosphate-rich slag from their furnaces as an agricultural fertilizer.[15]

Archaeologists are still discovering the extent of Cistercian technology.[16] At Laskill, an outstation of Rievaulx Abbey and the only medieval blast furnace so far identified in Britain, the slag produced was low in iron content.[17] Slag from other furnaces of the time contained a substantial concentration of iron, whereas Laskill is believed to have produced cast iron quite efficiently.[17][18][19] Its date is not yet clear, but it probably did not survive until Henry VIII's Dissolution of the Monasteries in the late 1530s, as an agreement (immediately after that) concerning the "smythes" with the Earl of Rutland in 1541 refers to blooms.[20] Nevertheless, the means by which the blast furnace spread in medieval Europe has not finally been determined.

Early modern blast furnaces: origin and spread

File:Weissmann Balve
Luisenhuette at Balve

The direct ancestor of these used in France and England was in the Namur region in what is now Wallonia (Belgium). From there, they spread first to the Pays de Bray on the eastern boundary of Normandy and from there to the Weald of Sussex, where the first furnace (called Queenstock) in Buxted was built in about 1491, followed by one at Newbridge in Ashdown Forest in 1496. They remained few in number until about 1530 but many were built in the following decades in the Weald, where the iron industry perhaps reached its peak about 1590. Most of the pig iron from these furnaces was taken to finery forges for the production of bar iron.[21]

The first British furnaces outside the Weald appeared during the 1550s, and many were built in the remainder of that century and the following ones. The output of the industry probably peaked about 1620, and was followed by a slow decline until the early 18th century. This was apparently because it was more economic to import iron from Sweden and elsewhere than to make it in some more remote British locations. Charcoal that was economically available to the industry was probably being consumed as fast as the wood to make it grew.[22]

The first blast furnace in Russia opened in 1637 near Tula and was called the Gorodishche Works. The blast furnace spread from here to the central Russia and then finally to the Urals.[23]

Blast furnaces have also been discovered and recorded to have been created in medieval West Africa with some of the metalworking Bantu civilizations such as the Bunyoro Empire and the Nyoro people.[24]

[[File:|thumb|250px|Representation of blast furnaces and other ironmaking processes from the 19th century]]

Coke blast furnaces

In 1709, at Coalbrookdale in Shropshire, England, Abraham Darby began to fuel a blast furnace with coke instead of charcoal. Coke iron was initially only used for foundry work, making pots and other cast iron goods. Foundry work was a minor branch of the industry, but Darby's son built a new furnace at nearby Horsehay, and began to supply the owners of finery forges with coke pig iron for the production of bar iron. Coke pig iron was by this time cheaper to produce than charcoal pig iron. The use of a coal-derived fuel in the iron industry was a key factor in the British Industrial Revolution.[25][26][27] Darby's old blast furnace has been archaeologically excavated and can be seen in situ at Coalbrookdale, part of the Ironbridge Gorge Museums. Cast iron from the furnace was used to make girders for the world's first iron bridge in 1779. The Iron Bridge crosses the River Severn at Coalbrookdale and remains in use for pedestrians.

A further important development was the change to hot blast, patented by James Beaumont Neilson at Wilsontown Ironworks in Scotland in 1828. This further reduced production costs. Within a few decades, the practice was to have a "stove" as large as the furnace next to it into which the waste gas (containing CO) from the furnace was directed and burnt. The resultant heat was used to preheat the air blown into the furnace.[28]

A further significant development was the application of raw anthracite coal to the blast furnace, first tried successfully by George Crane at Ynyscedwyn ironworks in south Wales in 1837.[29] It was taken up in America by the Lehigh Crane Iron Company at Catasauqua, Pennsylvania in 1839.

Modern furnaces

The blast furnace remains an important part of modern iron production. Modern furnaces are highly efficient, including Cowper stoves to pre-heat the blast air and employ recovery systems to extract the heat from the hot gases exiting the furnace. Competition in industry drives higher production rates. The largest blast furnaces have a volume around 5580 m3 (190,000 cu ft)[30] and can produce around 80,000 tonnes (88,000 short tons) of iron per week.

This is a great increase from the typical 18th-century furnaces, which averaged about 360 tonnes (400 short tons) per year. Variations of the blast furnace, such as the Swedish electric blast furnace, have been developed in countries which have no native coal resources.

Modern process

File:Blast furnace
Blast furnace placed in an installation
1. Iron ore + limestone sinter
2. Coke
3. Elevator
4. Feedstock inlet
5. Layer of coke
6. Layer of sinter pellets of ore and limestone
7. Hot blast (around 1200°C)
8. Removal of slag
9. Tapping of molten pig iron
10. Slag pot
11. Torpedo car for pig iron
12. Dust cyclone for separation of solid particles
13. Cowper stoves for hot blast
14. Smoke outlet (can be redirected to carbon capture & storage (CCS) tank)
15: Feed air for Cowper stoves (air pre-heaters)
16. Powdered coal
17. Coke oven
18. Coke
19. Blast furnace gas downcomer

[[File:|thumb|right|250px|Blast furnace diagram
1. Hot blast from Cowper stoves
2. Melting zone (bosh)
3. Reduction zone of ferrous oxide (barrel)
4. Reduction zone of ferric oxide (stack)
5. Pre-heating zone (throat)
6. Feed of ore, limestone, and coke
7. Exhaust gases
8. Column of ore, coke and limestone
9. Removal of slag
10. Tapping of molten pig iron
11. Collection of waste gases]]

Modern furnaces are equipped with an array of supporting facilities to increase efficiency, such as ore storage yards where barges are unloaded. The raw materials are transferred to the stockhouse complex by ore bridges, or rail hoppers and ore transfer cars. Rail-mounted scale cars or computer controlled weight hoppers weigh out the various raw materials to yield the desired hot metal and slag chemistry. The raw materials are brought to the top of the blast furnace via a skip car powered by winches or conveyor belts.[31]

There are different ways in which the raw materials are charged into the blast furnace. Some blast furnaces use a "double bell" system where two "bells" are used to control the entry of the raw material into the blast furnace. The purpose of the two bells is to minimize the loss of hot gases in the blast furnace. First the raw materials are emptied into the upper or small bell. The bell is then rotated a predetermined amount in order to distribute the charge more accurately. The small bell then opens to empty the charge into the large bell. The small bell then closes, to seal the blast furnace, while the large bell dispenses the charge into the blast furnace.[32][33] A more recent design is to use a "bell-less" system. These systems use multiple hoppers to contain each raw material, which is then discharged into the blast furnace through valves.[32] These valves are more accurate at controlling how much of each constituent is added, as compared to the skip or conveyor system, thereby increasing the efficiency of the furnace. Some of these bell-less systems also implement a chute in order to precisely control where the charge is placed.[34]

The iron making blast furnace itself is built in the form of a tall chimney-like structure lined with refractory brick. Coke, limestone flux, and iron ore (iron oxide) are charged into the top of the furnace in a precise filling order which helps control gas flow and the chemical reactions inside the furnace. Four "uptakes" allow the hot, dirty gas to exit the furnace dome, while "bleeder valves" protect the top of the furnace from sudden gas pressure surges. When plugged, bleeder valves need to be cleaned with a bleeder cleaner. The coarse particles in the gas settle in the "dust catcher" and are dumped into a railroad car or truck for disposal, while the gas itself flows through a venturi scrubber and a gas cooler to reduce the temperature of the cleaned gas.[31]

The "casthouse" at the bottom half of the furnace contains the bustle pipe, tuyeres and the equipment for casting the liquid iron and slag. Once a "taphole" is drilled through the refractory clay plug, liquid iron and slag flow down a trough through a "skimmer" opening, separating the iron and slag. Modern, larger blast furnaces may have as many as four tapholes and two casthouses.[31] Once the pig iron and slag has been tapped, the taphole is again plugged with refractory clay.

The tuyeres are used to implement a hot blast, which is used to increase the efficiency of the blast furnace. The hot blast is directed into the furnace through water-cooled copper nozzles called tuyeres near the base. The hot blast temperature can be from 900 °C to 1300 °C (1600 °F to 2300 °F) depending on the stove design and condition. The temperatures they deal with may be 2000 °C to 2300 °C (3600 °F to 4200 °F). Oil, tar, natural gas, powdered coal and oxygen can also be injected into the furnace at tuyere level to combine with the coke to release additional energy which is necessary to increase productivity.[31]

Chemistry

[[File:|thumb|250px|right|Blast furnaces of Třinec Iron and Steel Works]] The main chemical reaction producing the molten iron is:

Fe2O3 + 3CO → 2Fe + 3CO2[35]

Preheated blast air blown into the furnace reacts with the carbon in the form of coke to produce carbon monoxide and heat. The carbon monoxide then reacts with the iron oxide to produce molten iron and carbon dioxide. Hot carbon dioxide, unreacted carbon monoxide, and nitrogen from the air pass up through the furnace as fresh feed material travels down into the reaction zone. As the material travels downward, the counter-current gases both preheat the feed charge, decompose the limestone to calcium oxide and carbon dioxide, and begin to reduce the iron oxides in the solid state. The main reaction controlling the gas atmosphere in the furnace is called the Boudouard reaction:

C + O2 → CO2[35]
CO2 + C → 2CO[35]

The decomposition of limestone in the middle zones of the furnace proceeds according to the following reaction:

CaCO3 → CaO + CO2[31]

The calcium oxide formed by decomposition reacts with various acidic impurities in the iron (notably silica), to form a fayalitic slag which is essentially calcium silicate, CaSiO3:[35]

SiO2 + CaO → CaSiO3[36]

The "pig iron" produced by the blast furnace has a relatively high carbon content of around 4–5%, making it very brittle, and of limited immediate commercial use. Some pig iron is used to make cast iron. The majority of pig iron produced by blast furnaces undergoes further processing to reduce the carbon content and produce various grades of steel used for tools and construction materials.

Although the efficiency of blast furnaces is constantly evolving, the chemical process inside the blast furnace remains the same. According to the American Iron and Steel Institute: "Blast furnaces will survive into the next millennium because the larger, efficient furnaces can produce hot metal at costs competitive with other iron making technologies."[31] One of the biggest drawbacks of the blast furnaces is the inevitable carbon dioxide production as iron is reduced from iron oxides by carbon and there is no economical substitute – steelmaking is one of the unavoidable industrial contributors of the CO2 emissions in the world (see greenhouse gases).

The challenge set by the greenhouse gas emissions of the blast furnace is being addressed in an on-going European Program called ULCOS (Ultra Low CO2 Steelmaking).[37] Several new process routes have been proposed and investigated in depth to cut specific emissions (CO2 per ton of steel) by at least 50%. Some rely on the capture and further storage (CCS) of CO2, while others choose decarbonizing iron and steel production, by turning to hydrogen, electricity and biomass [38]. In the nearer term, a technology that incorporates CCS into the blast furnace process itself and is called the Top-Gas Recycling Blast Furnace is under development, with a scale-up to a commercial size blast furnace under way. The technology should be fully demonstrated by the end of the 2010s, in line with the timeline set, for example, by the EU to cut emissions significantly. Broad deployment could take place from 2020 on.

Decommissioned blast furnaces as museum sites

For a long time, it was normal procedure for a decommissioned blast furnace to be demolished and either be replaced with a newer, improved one, or to have the entire site demolished to make room for follow-up use of the area. In recent decades, several countries have realized the value of blast furnaces as a part of their industrial history. Rather than being demolished, abandoned steel mills were turned into museums or integrated into multi-purpose parks. The largest number of preserved historic blast furnaces exists in Germany; other such sites exist in Spain, France, the Czech Republic, Japan, Luxembourg, Poland, Mexico and the United States.

See also

References

  1. ^ a b Ebrey, p. 30.
  2. ^ Early iron in China, Korea, and Japan, Donald B. Wagner, March 1993
  3. ^ Needham, Joseph (1986), [Expression error: Unexpected < operator Science and Civilisation in China, Volume 4: Physics and Physical Technology, Part 2, Mechanical Engineering], Taipei: Cambridge University Press, p. 370, ISBN 0521058031. 
  4. ^ The earliest use of iron in China, Donald B. Wagner, 1999
  5. ^ Donald B. Wagner, 'Chinese blast furnaces from the 10th to the 14th century' Historical Metallurgy 37(1) (2003), 25-37; originally published in West Asian Science, Technology, and Medicine 18 (2001), 41-74.
  6. ^ Ebrey, p. 158.
  7. ^ Duncan E. Miller and N.J. Van Der Merwe, 'Early Metal Working in Sub Saharan Africa' Journal of African History 35 (1994) 1-36; Minze Stuiver and N.J. Van Der Merwe, 'Radiocarbon Chronology of the Iron Age in Sub-Saharan Africa' Current Anthropology 1968. Tylecote 1975 (see below)
  8. ^ A History of Sub-Saharan Africa
  9. ^ The Nubian Past
  10. ^ Archaeological Investigations on the Beginning of Blast Furnace-Technology in Central Europe
  11. ^ A. Wetterholm, 'Blast furnace studies in Nora bergslag' (Örebro universitet 1999, Järn och Samhälle) ISBN 91-7668-204-8
  12. ^ N. Bjökenstam, 'The Blast Furnace in Europe during the Middle Ages: part of a new system for producing wrought iron' in G. Magnusson, The Importance of Ironmaking: Technological Innovation and Social Change I (Jernkontoret, Stockholm 1995), 143–53 and other papers in the same volume.
  13. ^ Woods, p. 34.
  14. ^ Gimpel, p. 67.
  15. ^ Woods, p. 35.
  16. ^ Woods, p. 36.
  17. ^ a b Woods, p. 37.
  18. ^ R. W. Vernon, G. McDonnell and A. Schmidt, 'An integrated geophysical and analytical appraisal of early iron-working: three case studies' Historical Metallurgy 32(2) (1998), pp. 72–5, 79
  19. ^ David Derbyshire, 'Henry "Stamped Out Industrial Revolution"', The Daily Telegraph (21 June 2002); cited by Woods.
  20. ^ Schubert, H. R. (1957), [Expression error: Unexpected < operator History of the British iron and steel industry from c. 450 BC to AD 1775], Routledge & Kegan Paul, pp. 395–397. 
  21. ^ B. Awty & C. Whittick (with P. Combes), 'The Lordship of Canterbury, iron-founding at Buxted, and the continental antecedents of cannon-founding in the Weald' Sussex Archaeological Collections 140 (2004 for 2002), pp. 71–81.
  22. ^ P. W. King, 'The production and consumption of iron in early modern England and Wales' Economic History Review LVIII(1), 1-33; G. Hammersley, 'The charcoal iron industry and its fuel 1540–1750' Economic History Review Ser. II, XXVI (1973), pp. 593–613.
  23. ^ Yakovlev, V. B. (August 1957), "Development of Wrought Iron Production", Metallurgist (New York: Springer) 1 (8): 545, doi:10.1007/BF00732452, ISSN 0026-0894, http://www.springerlink.com/content/hx515m2689563420/, retrieved 2008-01-13. 
  24. ^ Iron, Gender, and Power - By Eugenia W. Herbert
  25. ^ Raistrick, Arthur (1953), [Expression error: Unexpected < operator Dynasty of Iron Founders: The Darbys and Coalbrookedale], York: Longmans, Green. 
  26. ^ Hyde
  27. ^ Trinder, Barrie Stuart; Trinder, Barrie (2000), [Expression error: Unexpected < operator The Industrial Revolution in Shropshire], Chichester: Phillimore, ISBN 1860771335. 
  28. ^ Birch, pp. 181–9.
  29. ^ Hyde, p. 159.
  30. ^ Made in Ukraine, http://www.madeinua.info/view.aspx?type=ja&lang=2&jaid=261, retrieved 2008-05-20. 
  31. ^ a b c d e f AISI
  32. ^ a b McNeil, Ian (1990), An encyclopaedia of the history of technology, Taylor & Francis, p. 163, ISBN 0415013062, http://books.google.com/?id=WW4Q-vMA6IMC. 
  33. ^ Strassburger, Julius H. (1969), Blast furnace: Theory and Practice, Taylor & Francis, p. 564, ISBN 0677104200, http://books.google.com/?id=xLsOAAAAQAAJ. 
  34. ^ Whitfield, Peter, Design and Operation of a Gimbal Top Charging System, http://www2.sea.siemens.com/NR/rdonlyres/FFA8AF1C-1791-46E8-AA09-917BB28D8701/0/038.pdf, retrieved 2008-06-22. 
  35. ^ a b c d "Blast Furnace". Science Aid. http://www.scienceaid.co.uk/chemistry/industrial/blastfurnace.html. Retrieved 2007-12-30. 
  36. ^ Dr. K. E Lee, Form Two Science (Biology Chemistry Physics)
  37. ^ www.ulcos.org
  38. ^ ICIT-Revue de Métallurgie, September and October issues, 2009

Bibliography

  • Birch, Alan (2005), [Expression error: Unexpected < operator The Economic History of the British Iron and Steel Industry, 1784-1879], Routledge, ISBN 0415382483 
  • Ebrey, Patricia Buckley; Walthall, Anne; Palais, James B. (2005), [Expression error: Unexpected < operator East Asia: A Cultural, Social, and Political History], Boston: Houghton Mifflin, ISBN 0618133844. 
  • Gimpel, Jean (1976), [Expression error: Unexpected < operator The Medieval Machine: The Industrial Revolution of the Middle Ages], New York: Holt, Rinehart and Winston, ISBN 0030146364. 
  • Hyde, Charles K. (1977), [Expression error: Unexpected < operator Technological Change and the British iron industry, 1700-1870], Princeton: Princeton University Press, ISBN 0691052468. 
  • Woods, Thomas (2005), [Expression error: Unexpected < operator How the Catholic Church Built Western Civilization], Washington, D.C.: Regnery Publ., ISBN 0-89526-038-7. 

External links


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message