The Full Wiki

Boiler: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...

More interesting facts on Boiler

Include this on your site/blog:


From Wikipedia, the free encyclopedia

A portable boiler
(preserved, Poland)
A stationary boiler
(United States)

A boiler is a closed vessel in which water or other fluid is heated. The heated or vaporized fluid exits the boiler for use in various processes or heating applications.[1][2]



Diagram of a fire-tube boiler
Diagram of a water-tube boiler.


The pressure vessel in a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel is virtually prohibited (by the ASME Boiler Code) for use in wetted parts of modern boilers, but is used often in superheater sections that will not be exposed to liquid boiler water. In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers. Historically, copper was often used for fireboxes (particularly for steam locomotives), because of its better formability and higher thermal conductivity; however, in more recent times, the high price of copper often makes this an uneconomic choice and cheaper substitutes (such as steel) are used instead.

For much of the Victorian "age of steam", the only material used for boilermaking was the highest grade of wrought iron, with assembly by rivetting. This iron was often obtained from specialist ironworks, such as at Cleator Moor (UK), noted for the high quality of their rolled plate and its suitability for high-reliability use in critical applications, such as high-pressure boilers. In the 20th century, design practice instead moved towards the use of steel, which is stronger and cheaper, with welded construction, which is quicker and requires less labour.

Cast iron may be used for the heating vessel of domestic water heaters. Although such heaters are usually termed "boilers", their purpose is usually to produce hot water, not steam, and so they run at low pressure and try to avoid actual boiling. The brittleness of cast iron makes it impractical for high pressure steam boilers.


The source of heat for a boiler is combustion of any of several fuels, such as wood, coal, oil, or natural gas. Electric steam boilers use resistance- or immersion-type heating elements. Nuclear fission is also used as a heat source for generating steam. Heat recovery steam generators (HRSGs) use the heat rejected from other processes such as gas turbines.


Boilers can be classified into the following configurations:

  • "Pot boiler" or "Haycock boiler": a primitive "kettle" where a fire heats a partially-filled water container from below. 18th century Haycock boilers generally produced and stored large volumes of very low-pressure steam, often hardly above that of the atmosphere. These could burn wood or most often, coal. Efficiency was very low.
  • Fire-tube boiler. Here, water partially fills a boiler barrel with a small volume left above to accommodate the steam (steam space). This is the type of boiler used in nearly all steam locomotives. The heat source is inside a furnace or firebox that has to be kept permanently surrounded by the water in order to maintain the temperature of the heating surface just below boiling point. The furnace can be situated at one end of a fire-tube which lengthens the path of the hot gases, thus augmenting the heating surface which can be further increased by making the gases reverse direction through a second parallel tube or a bundle of multiple tubes (two-pass or return flue boiler); alternatively the gases may be taken along the sides and then beneath the boiler through flues (3-pass boiler). In the case of a locomotive-type boiler, a boiler barrel extends from the firebox and the hot gases pass through a bundle of fire tubes inside the barrel which greatly increase the heating surface compared to a single tube and further improve heat transfer. Fire-tube boilers usually have a comparatively low rate of steam production, but high steam storage capacity. Fire-tube boilers mostly burn solid fuels, but are readily adaptable to those of the liquid or gas variety.
  • Water-tube boiler. In this type,the water tubes are arranged inside a furnace in a number of possible configurations: often the water tubes connect large drums, the lower ones containing water and the upper ones, steam and water; in other cases, such as a monotube boiler, water is circulated by a pump through a succession of coils. This type generally gives high steam production rates, but less storage capacity than the above. Water tube boilers can be designed to exploit any heat source and are generally preferred in high pressure applications since the high pressure water/steam is contained within small diameter pipes which can withstand the pressure with a thinner wall.
Boiler for steam locomotive[3]
  • Flash boiler. A specialized type of water-tube boiler.
  • Fire-tube boiler with Water-tube firebox. Sometimes the two above types have been combined in the following manner: the firebox contains an assembly of water tubes, called thermic syphons. The gases then pass through a conventional firetube boiler. Water-tube fireboxes were installed in many Hungarian locomotives, but have met with little success in other countries.
  • Sectional boiler. In a cast iron sectional boiler, sometimes called a "pork chop boiler" the water is contained inside cast iron sections. These sections are assembled on site to create the finished boiler.


Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. Collapsed or dislodged boiler tubes could also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen who loaded coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories could demolish entire buildings.[4]

A boiler that has a loss of feed water and is permitted to boil dry can be extremely dangerous. If feed water is then sent into the empty boiler, the small cascade of incoming water instantly boils on contact with the superheated metal shell and leads to a violent explosion that cannot be controlled even by safety steam valves. Draining of the boiler could also occur if a leak occurred in the steam supply lines that was larger than the make-up water supply could replace. The Hartford Loop was invented in 1919 by the Hartford Steam Boiler and Insurance Company as a method to help prevent this condition from occurring, and thereby reduce their insurance claims.[5]

Superheated steam boilers

A superheated boiler on a steam locomotive.

Most boilers heat water until it boils, and then the steam is used at saturation temperature (i.e., saturated steam). Superheated steam boilers boil the water and then further heat the steam in a superheater. This provides steam at much higher temperature, but can decrease the overall thermal efficiency of the steam generating plant due to the fact that the higher steam temperature requires a higher flue gas exhaust temperature. There are several ways to circumvent this problem, typically by providing a feedwater heating "ecomomizer", and/or a combustion air heater in the hot flue gas exhaust path. There are advantages to superheated steam and this may (and usually will) increase overall efficiency of both steam generation and its utilisation considered together: gains in input temperature to a turbine should outweigh any cost in additional boiler complication and expense. There may also be practical limitations in using "wet" steam, as causing condensation droplets will damage turbine blades.

Superheated steam presents unique safety concerns because, if there is a leak in the steam piping, steam at such high pressure/temperature can cause serious, instantaneous harm to anyone entering its flow. Since the escaping steam will initially be completely superheated vapor, it is not easy to see the leak, although the intense heat and sound from such a leak clearly indicates its presence.

The superheater works like coils on an air conditioning unit, however to a different end. The steam piping (with steam flowing through it) is directed through the flue gas path in the boiler furnace. This area typically is between 1,300–1,600 degree Celsius (2,372–2,912 °F). Some superheaters are radiant type (absorb heat by radiation), others are convection type (absorb heat via a fluid i.e. gas) and some are a combination of the two. So whether by convection or radiation the extreme heat in the boiler furnace/flue gas path will also heat the superheater steam piping and the steam within as well. It is important to note that while the temperature of the steam in the superheater is raised, the pressure of the steam is not: the turbine or moving pistons offer a "continuously expanding space" and the pressure remains the same as that of the boiler.[6] The process of superheating steam is most importantly designed to remove all droplets entrained in the steam to prevent damage to the turbine blading and/or associated piping.

Supercritical steam generators

Supercritical steam generators (also known as Benson boilers) are frequently used for the production of electric power. They operate at "supercritical pressure". In contrast to a "subcritical boiler", a supercritical steam generator operates at such a high pressure (over 3,200 psi/22.06 MPa or 220.6 bar) that actual boiling ceases to occur, and the boiler has no water - steam separation. There is no generation of steam bubbles within the water, because the pressure is above the "critical pressure" at which steam bubbles can form. It passes below the critical point as it does work in the high pressure turbine and enters the generator's condenser. This is more efficient, resulting in slightly less fuel use. The term "boiler" should not be used for a supercritical pressure steam generator, as no "boiling" actually occurs in this device.

History of supercritical steam generation

Contemporary supercritical steam generators are sometimes referred as Benson boilers. In 1922, Mark Benson was granted a patent for a boiler designed to convert water into steam at high pressure.

Safety was the main concern behind Benson’s concept. Earlier steam generators were designed for relatively low pressures of up to about 100 bar (10,000 kPa; 1,450 psi), corresponding to the state of the art in steam turbine development at the time. One of their distinguishing technical characteristics was the riveted drum. These drums were used to separate water and steam, and were often the source of boiler explosions, usually with catastrophic consequences. However, the drum can be completely eliminated if the evaporation process is avoided altogether. This happens when water is heated at a pressure above the critical pressure and then expanded to dry steam at subcritical pressure. A throttle valve located downstream of the evaporator can be used for this purpose.

As development of Benson technology continued, boiler design soon moved away from the original concept introduced by Mark Benson. In 1929, a test boiler that had been built in 1927 began operating in the thermal power plant at Gartenfeld in Berlin for the first time in subcritical mode with a fully open throttle valve. The second Benson boiler began operation in 1930 without a pressurizing valve at pressures between 40 and 180 bar (4,000 and 18,000 kPa; 580 and 2,611 psi) at the Berlin cable factory. This application represented the birth of the modern variable-pressure Benson boiler. After that development, the original patent was no longer used. The Benson boiler name, however, was retained.

Two current innovations have a good chance of winning acceptance in the competitive market for once-through steam generators:

  • A new type of heat-recovery steam generator based on the Benson boiler, which has operated successfully at the Cottam combined-cycle power plant in the central part of England,
  • The vertical tubing in the combustion chamber walls of coal-fired steam generators which combines the operating advantages of the Benson system with the design advantages of the drum-type boiler. Construction of a first reference plant, the Yaomeng power plant in China, commenced in 2001.

Hydronic boilers

Hydronic boilers are used in generating heat for residential and industrial purposes. They are the typical power plant for central heating systems fitted to houses in northern Europe (where they are commonly combined with domestic water heating), as opposed to the forced-air furnaces or wood burning stoves more common in North America. The hydronic boiler operates by way of heating water/fluid to a preset temperature (or sometimes in the case of single pipe systems, until it boils and turns to steam) and circulating that fluid throughout the home typically by way of radiators, baseboard heaters or through the floors. The fluid can be heated by any means...gas, wood, fuel oil, etc, but in built-up areas where piped gas is available, natural gas is currently the most economical and therefore the usual choice. The fluid is in an enclosed system and circulated throughout by means of a motorized pump. The name "boiler" can be a misnomer in that, except for systems using steam radiators, the water in a properly functioning hydronic boiler never actually boils. Most new systems are fitted with condensing boilers for greater efficiency. These boilers are referred to as condensing boilers because they condense the water vapor in the flue gases to capture the latent heat of vaporization of the water produced during combustion.

Hydronic systems are being used more and more in new construction in North America for several reasons. Among the reasons are:

  • They are more efficient and more economical than forced-air systems (although initial installation can be more expensive, because of the cost of the copper and aluminum).
  • The baseboard copper pipes and aluminum fins take up less room and use less metal than the bulky steel ductwork required for forced-air systems.
  • They provide more even, less fluctuating temperatures than forced-air systems. The copper baseboard pipes hold and release heat over a longer period of time than air does, so the furnace does not have to switch off and on as much. (Copper heats mostly through conduction and radiation, whereas forced-air heats mostly through forced convection. Air has much lower thermal conductivity and volumetric heat capacity than copper, so the conditioned space warms up and cools down more quickly than with hydronic. See also thermal mass.)
  • They do not dry out the interior air as much.
  • They do not introduce any dust, allergens, mold, or (in the case of a faulty heat exchanger) combustion byproducts into the living space.

Forced-air heating does have some advantages, however. See forced-air heating.


Boiler fittings and accessories

  • Safety valve: It is used to relieve pressure and prevent possible explosion of a boiler.
  • Water level indicators: They show the operator the level of fluid in the boiler, also known as a sight glass, water gauge or water column is provided.
  • Bottom blowdown valves: They provide a means for removing solid particulates that condense and lay on the bottom of a boiler. As the name implies, this valve is usually located directly on the bottom of the boiler, and is occasionally opened to use the pressure in the boiler to push these particulates out.
  • Continuous blowdown valve: This allows a small quantity of water to escape continuously. Its purpose is to prevent the water in the boiler becoming saturated with dissolved salts. Saturation would lead to foaming and cause water droplets to be carried over with the steam - a condition known as priming. Blowdown is also often used to monitor the chemistry of the boiler water.
  • Flash Tank: High pressure blowdown enters this vessel where the steam can 'flash' safely and be used in a low-pressure system or be vented to atmosphere while the ambient pressure blowdown flows to drain.
  • Automatic Blowdown/Continuous Heat Recovery System: This system allows the boiler to blowdown only when makeup water is flowing to the boiler, thereby transferring the maximum amount of heat possible from the blowdown to the makeup water. No flash tank is generally needed as the blowdown discharged is close to the temperature of the makeup water.
  • Hand holes: They are steel plates installed in openings in "header" to allow for inspections & installation of tubes and inspection of internal surfaces.
  • Steam drum internals, A series of screen, scrubber & cans (cyclone separators).
  • Low- water cutoff: It is a mechanical means (usually a float switch) that is used to turn off the burner or shut off fuel to the boiler to prevent it from running once the water goes below a certain point. If a boiler is "dry-fired" (burned without water in it) it can cause rupture or catastrophic failure.
  • Surface blowdown line: It provides a means for removing foam or other lightweight non-condensible substances that tend to float on top of the water inside the boiler.
  • Circulating pump: It is designed to circulate water back to the boiler after it has expelled some of its heat.
  • Feedwater check valve or clack valve: A non-return stop valve in the feedwater line. This may be fitted to the side of the boiler, just below the water level, or to the top of the boiler.
  • Top feed: A check valve (clack valve) in the feedwater line, mounted on top of the boiler. It is intended to reduce the nuisance of limescale. It does not prevent limescale formation but causes the limescale to be precipitated in a powdery form which is easily washed out of the boiler.
  • Desuperheater tubes or bundles: A series of tubes or bundles of tubes in the water drum or the steam drum designed to cool superheated steam. Thus is to supply auxiliary equipment that doesn't need, or may be damaged by, dry steam.
  • Chemical injection line: A connection to add chemicals for controlling feedwater pH.

Steam accessories

  • Main steam stop valve:
  • Steam traps:
  • Main steam stop/Check valve: It is used on multiple boiler installations.

Combustion accessories

  • Fuel oil system:
  • Gas system:
  • Coal system:
  • Soot blower

Other essential items

Controlling draft

Most boilers now depend on mechanical draft equipment rather than natural draft. This is because natural draft is subject to outside air conditions and temperature of flue gases leaving the furnace, as well as the chimney height. All these factors make proper draft hard to attain and therefore make mechanical draft equipment much more economical.

There are three types of mechanical draft:

  • Induced draft: This is obtained one of three ways, the first being the "stack effect" of a heated chimney, in which the flue gas is less dense than the ambient air surrounding the boiler. The denser column of ambient air forces combustion air into and through the boiler. The second method is through use of a steam jet. The steam jet oriented in the direction of flue gas flow induces flue gasses into the stack and allows for a greater flue gas velocity increasing the overall draft in the furnace. This method was common on steam driven locomotives which could not have tall chimneys. The third method is by simply using an induced draft fan (ID fan) which removes flue gases from the furnace and forces the exhaust gas up the stack. Almost all induced draft furnaces operate with a slightly negative pressure.
  • Forced draft: Draft is obtained by forcing air into the furnace by means of a fan (FD fan) and ductwork. Air is often passed through an air heater; which, as the name suggests, heats the air going into the furnace in order to increase the overall efficiency of the boiler. Dampers are used to control the quantity of air admitted to the furnace. Forced draft furnaces usually have a positive pressure.
  • Balanced draft: Balanced draft is obtained through use of both induced and forced draft. This is more common with larger boilers where the flue gases have to travel a long distance through many boiler passes. The induced draft fan works in conjunction with the forced draft fan allowing the furnace pressure to be maintained slightly below atmospheric.

See also


  1. ^ Frederick M. Steingress (2001). Low Pressure Boilers (4th Edition ed.). American Technical Publishers. ISBN 0-8269-4417-5. 
  2. ^ Frederick M. Steingress, Harold J. Frost and Darryl R. Walker (2003). High Pressure Boilers (3rd Edition ed.). American Technical Publishers. ISBN 0-8269-4300-4. 
  3. ^ "Welcome to". Contact Us. September 11, 2008. Retrieved 2008-10-03. 
  4. ^ Journal name: The Locomotive, by Hartford Steam Boiler Inspection and Insurance Company, Published by Hartford Steam Boiler Inspection and Insurance Co., 1911, Item notes: n.s.:v.28 (1910-11), Original from Harvard University, Digitized December 11, 2007 by Google Books, Link to digitized document:,M1 – Links to an article on a massive Pabst Brewing Company boiler explosion in 1909 that destroyed a building, and blew parts onto the roof of nearby buildings. This documents also contains a list of day-by-day boiler accidents and accident summaries by year, and discussions of boiler damage claims.
  5. ^ (Looking for a better source than this.)
  6. ^ Bell, A.M. (1952) Locomotives p 46. Virtue and Company Ltd, London

Further reading

External links

1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

BOILER, a vessel in which water or other liquid is heated to the boiling point; specifically, the apparatus by which steam is produced from water, as one step in the process whereby the potential energy of coal or other fuel is converted into mechanical work by means of the steam-engine. Boilers of the latter kind must all possess certain essential features, whilst of other qualities that are desirable some may not be altogether compatible with the special conditions under which the boilers are to be worked. Amongst the essentials are a receptacle capable of containing the water and the steam produced by its evaporation, and strong enough continuously to withstand with safety the highest pressure of steam for which the boiler is intended. Another essential is a furnace for burning the fuel, and a further one is the provision of a sufficiency of heating surface for the transmission of the heat produced by the combustion of the fuel to the water which is required to be evaporated. Desirable qualities are that the arrangements of the furnaces should be such that a reasonably perfect combustion of the fuel should be possible, and that the heating surfaces should be capable of transmitting a large proportion of the heat produced to the water so as to obtain a high evaporative efficiency. Further, the design generally should be compact, not too heavy or costly, and such that the cleaning necessary to maintain the evaporative efficiency can be easily effected. It should also be such that the cost of upkeep will be small, and that only an average amount of skill and attention will be required under working conditions. It is for providing these qualities in different degrees according to the special requirements of various circumstances that the very different designs of the various types of boilers have been evolved.

Table of contents

Classes of Boilers

Boilers generally may be divided into two distinct classes, one comprising those which are generally called " tank " boilers, containing relatively large quantities of water, and the other those which are generally called " water-tube " boilers, in which the water is mainly contained in numerous comparatively small tubes. There are, however, some types of boiler which combine to some extent the properties of both these classes. Each class has its representatives amongst both land and marine boilers. In "tank" boilers the outer shell is wholly or partially cylindrical, this form being one in which the necessary strength can be obtained without the use of a large number of stays. The boilers are generally internally fired, the furnace plates being surrounded with water and forming the most efficient portion of the heating surfaces. On leaving the furnace the products of combustion are led into a chamber and thence through flues or through numerous small tubes which serve to transmit some of the heat of combustion to the water contained in the boiler. In " water-tube " boilers the fire is usually placed under a collection of tubes containing water and forming the major portion of the heating surface of the boiler. Both the fire and the tubes are enclosed in an outer casing of brickwork or other fire-resisting substance. In some forms of water-tube boiler the fire is entirely surrounded by water-tubes and the casing is in no part exposed to the direct action of the fire. In " tank " boilers generally no difficulty is experienced in keeping all the heating surfaces in close contact with water, but in " water-tube " boilers special provision has to be made in the design for maintaining the circulation of water through the tubes. (For " flash " boilers see Motor Vehicles, and for domestic hot-water boilers Heating.) Tank Boilers. - Of large stationary boilers the forms most commonly used are those known as the " Lancashire " boiler, and its modification the " Galloway " boiler. These boilers are made from 26 to 30 ft. long, with diameters from 62 to 8 ft., and have two cylindrical furnace flues which in the "Lancashire" boiler extend for its whole length (see fig. 3). The working pressure is about 60 lb per sq. in. in the older boilers, from 1 00 lb to 120 lb per sq. in. in those supplying steam to compound engines, and from 150 to 170 lb where triple expansion engines are used. In some cases they have been constructed for a pressure of 200 lb per sq. in. The furnace flues are usually made in sections from 3 to 32 ft. long. Each section consists of one plate bent into a cylindrical form, the longitudinal joint being welded, and is flanged at both ends, the various pieces being joined together by an " Adamson " joint (fig. 1). It will be seen that these joints do not expose either rivets or double thickness of plate to the action of the fire; they further serve as stiffening rings to prevent collapse of the flue. In most of these boilers the heating surface is FIG. I. - Adamson increased by fitting in the furnace flues a Joint. number of " Galloway " tubes. These are conical tubes, made with a flange at each end, by means of which they are connected to the furnace plate. They are so proportioned that the diameter of the large end of the tube is slightly greater than that of the flange of the small end; this enables them to be readily removed and replaced if necessary. These tubes not only add to the heating surface, but they stiffen the flue, promote circulation of the water in the boiler, and by mixing up the flue gases improve the evaporative efficiency.

In the " Galloway " boiler the two furnaces extend only for about 9 or 10 ft. into the boiler, and lead into a large chamber or flue in which a number of " Galloway " tubes are fitted, and which extends from the furnace end to the end of the boiler. A cross section of this flue showing the distribution of the Galloway tubes is shown in fig. 2. When boilers less than about 62 ft. in diameter are needed, a somewhat similar type to the Lancashire boiler is used containing only one furnace. This is called a " Cornish " boiler.

In all three types of boiler the brickwork is constructed to form one central flue passing along the bottom of the boiler and two side flues extending up the side nearly to the waterlevel. A cross section of the brickwork is shown in fig. 2. The usual arrangement is for the flue gases to be divided as they leave the internal flue; onehalf returns along each side flue to the front of the boiler, and the whole then passes downwards into the central flue, travelling under the bottom of the boiler until the gases again reach the back end, where they pass into the chimney. In a few cases the arrangement is reversed, the gases first passing along the bottom flue and returning along the side flues. This latter arrangement, whilst promoting a more rapid circulation of water, has the disadvantage of requiring two dampers, and it is not suitable for those cases in which heavy deposits form on the bottoms of the boilers.

Where floor space is limited and also for small installations, other forms of cylindrical boilers are used, most of them being of the vertical type. That most commonly used is the simple Vertical. vertical boiler, with a plain vertical fire-box, and an internal smoke stack traversing the steam space. The fire-box is made slightly tapering in diameter, the space between it and the shell being filled with water. In all but the small sizes cross tubes are generally fitted. These are made about 9 in. in diameter of {-in. plate flanged at each end to enable them to be riveted to the fire-box plates. They are usually fitted with a slight inclination to facilitate water circulation.

FIG. 2. - Galloway Boiler: Section beyond the Bridge.

and a hand-hole closed by a suitable door is provided in the outer shell opposite to each tube for cleaning purposes. A boiler of this kind is illustrated in fig. 4. This form is often used on board ship for auxiliary purposes. Where more heating surface is required than can be obtained in the cross-tube boiler other types of vertical made from plates originally rolled of a uniform thickness, made into a cylindrical form with a welded longitudinal joint and then corrugated, the only difference between them being in the shapes of the corrugations. In the other three types the plates from which the furnaces are made are rolled with ribs or thickened portions at FIG. 3. - Lancashire Boiler (Messrs Tinker, Ltd.).

boiler are employed. For instance, in the " Tyne " boiler (fig. 5) the furnace is hemispherical, and the products of combustion are led into an upper combustion chamber traversed by four or more inclined water-tubes of about 9 in. diameter and by several vertical water-tubes of less diameter. In the " Victoria " boiler made by Messrs Clarke, Chapman & Co., and illustrated in fig. 6, the furnace is hemispherical; the furnace gases are led to an internal combustion chamber, and thence through numerous horizontal smoke-tubes to a smoke-box placed on the side of the boiler. In the somewhat similar boiler known as the " Cochran," the combustion chamber is made with a " dry " back. Instead of a water space at the back of the chamber, doors lined with firebrick are fitted. These give easy access to the tube ends.

The cylindrical multitubular re. turn tube boiler is in almost universal use in merchant steamers. It is made in various sizes ranging up to 17 ft. in diameter, the usual working pressure being from 160 to 200 lb per sq. in., although in some few cases pressures of 265 lb per sq. in. are in use. These boilers are of two types, doubleand single - ended. In single - ended boilers, which are those most generally used, the furnaces are fitted at one end only and vary in number from one in the smallest boiler to four in the largest. Three furnaces are the most usual practice. Each furnace generally has its own separate combustion chamber. In four furnace boilers, however, one chamber is sometimes made common to the two middle furnaces, and sometimes one chamber is fitted to each pair of side furnaces. In double-ended boilers furnaces are fitted at each end. In some cases each furnace has a separate combustion chamber, but more usually one chamber is made to serve for two furnaces, one at each end of the boiler. The two types of boilers are shown in figs. 7 and 8, which illustrate boilers made by Messrs D. Rowan & Co. of Glasgow, and which may be taken as representing good modern practice. The furnaces used in the smaller sizes are often of the plain cylindrical type, the thickness of plate varying from in. up to in. according to the diameter of the furnace and the working pressure. Occasionally furnaces with " Adamson " joints similar to those used in Lancashire boilers are employed, but for large furnaces and for high pressures corrugated or ribbed furnaces are usually adopted. Sketches of the sections of these are shown in fig. 9. The sections of the Morison, Fox and Deighton types are distances of 9 in. These furnaces are stronger to resist collapse than plain furnaces of the same thickness, and accommodate themselves more readily to changes of temperature.

There are two distinct types of connexion between the furnaces and the combustion chambers. In one, shown in fig. 8, the furnace is flanged at the crown portion for riveting to the tube plate, and the lower part of the furnace is riveted to the " wrapper " or side plate of the combustion chamber. In the other type, shown in fig. 7. and known generally as the "Gourlay back end, " the end of the furnace is contracted into an oval conical form, and is then flanged outwards round the whole of its circumference. The tube plate is made to extend to the bottom of the combustion chamber, and the FIG. 5. - Vertical Boiler with Water-tubes (the " Tyne," by Messrs Clarke, Chapman & Co.).

furnace is riveted to the tube plate. The advantage of the Gourlay back end is that in case of accident to the furnace it can be removed from the boiler and be replaced by one of the same design without disturbing the end plates, which is not possible with the other design.

FIG. 4.--Simple Vertical Boiler.

plates. The end plates of the boiler in the steam space and below the combustion chambers are stayed by longitudinal stays passing through the whole length of the boiler and secured by double nuts at each end. The tube plates are strengthened by stay tubes screwed into them.

Where natural or chimney draught is used the tubes are generally made 3 or 34 in. outside diameter and are rarely more than 7 ft. long, but where " forced " draught is employed they are usually made 21 in. diameter and 8 to 81 ft. long. A clear space of in. between the tubes is almost always arranged for, irrespective of size of tubes.

Stay tubes are screwed at both ends, the threads of the two ends being continuous so that they can be screwed into both tube plates; The Gourlay back end, however, is not so stiff as the other, and more longitudinal stays are required in the boiler.

0000000000000 00000000000000 00000000000000 000000.0000006 00000000000000 00000000000000 '.

00000000000000 00000000000000.0 00.00.000 0 00 0 00000000000000 00000000000000 000.000.000000

The flat sides and backs of the combustion chambers are stayed either to one another or to the shell of the boiler by numerous screw 0 0 0 Water€,Leuel_o_ obodanb0bbnbd 00000 0000000000000 0000 00000000000000 0000 00000000000000 00000 00000000000000 000000 000000000000000 0000 000000000000000 0000 000000000000000 00000 000000000000000 00000 000000000000000 0000 0 0 ... 000000000000000 _ 00000. ... o Qo.- -- '00000.0 4,000000;00000.. ,000000 ip0000 ..000 ?

¦i Morison Furnaces Morison Furnaces FIG. 6. - Vertical Boiler with internal combustion chamber (the " Victoria," by Messrs Clarke, Chapman & Co.).

stays which are screwed through the two plates they connect, and which are nearly always fitted with nuts inside the combustion chambers. The tops of the chambers are usually stayed by strong girders resting upon the tube plates and chamber back plates. In a few cases, however, they are stayed by vertical stays attached to T bars riveted to the boiler shell. A few boilers are made in which the chamber tops are strengthened by heavy transverse girder FIG. 8. - Double-ended Marine Boiler.

occasionally nuts are fitted to the front ends. The stay tubes are expanded into the plates and then beaded over.

The locomotive boiler consists of a cylindrical barrel attached to a portion containing the fire-box, which is nearly rectangular both in horizontal and vertical section. The fire-box sides are Loco stayed to the fire-box shell by numerous stays about motive. in. in diameter, usually pitched 4 in. apart both vertically and horizontally. The top of the fire-box in small boilers is stayed by means of girder stays running longitudinally and supported at the ends upon the tube plate and the opposite fire-box plate. In some boilers the girders are partly supported by slings from the crown of the boiler. In larger boilers the crown of the boiler above the fire-box is made flat and the fire-box crown is supported by vertical stays connecting it with the shell crown. Provision is generally made for the expansion of the tube plate, which is of copper, by allowing the two or three cross rows of stays nearest the tube plate to have freedom of motion upwards but not downwards. The ordinary tubes are usually i 4 in. diameter. The firebars are generally, though not always, made to slope downwards away from the fire door, and just below the lowest tubes ' a fire-bridge or baffle is fitted, extending about half-way from the tube plate to the fire-door side of the fire-box. In some cases water-tubes are fitted, extending right across the fire-box.

In a boiler for the London & O 0 0 0 South-Western Railway Co., ha y () o 0 0 ing a grate area of 31.5 sq. ft. and O 0 0 0 ft, there heating surface Ce of 112water t e water-tubes Morison Furnaces each 21 in. diameter. These are arranged in two clusters, each containing 56, one set being placed above the fire-bridge, and the other set nearer the fire door end of the boiler. The FIG. 7. - Single-ended Marine Boiler. water-tubes are of seamless steel, and are expanded into the fire-box side plates. In way of these tubes the outer shell side plates are supported by stay bars passing right through the water-tubes. The usual _ -?-? -. -? - pressure of locomotive boilers is about sq. in.

A good example of an express locomotive In this case the grate area is 30.9 sq. ft.

8" Morison Type.

Fox Type.

Deighton Type.

FIG. 9.

2500 sq. ft. The barrel is 5 ft. 6 in. diameter, 16 ft. long between tube plates. The fire-box crown is stayed by vertical stays extending to the shell crown, except for the three rows of stays nearest the tube plates. These are supported by cross girders resting upon brackets secured to the outer shell.

usual pressure is 180 lb. Like all water-tube boilers, they require to be frequently cleaned if impure feed-water is used, but the straightness of their tubes enables their condition to be ascertained at any time when the boiler is out of use, and any accumulation of scale to be removed. The superheaters, which are frequently fitted, consist of two cross-boxes or headers placed transversely under the cylindrical drum and connected by numerous C shaped tubes. They are situated between the tubes and the steam-chest, and are exposed to the heat of the furnace gases after their first passage across the tubes. The steam is taken by an internal pipe passing through the bottom of the drum into the upper cross-box, then through the C tubes into the lower box, and thence to the steam pipe. When steam is being raised, the superheater is flooded with water, which is drained out through a blow-off pipe before communication is opened with the steam-pipe. In large boilers of this type, two steam-chests are placed side by side connected together by two cross steam pipes and by the mud drum. Each, however, has its own separate feed supply. The largest boiler made has two steam chests ¢2 ft. diameter by 252 ft. long a grate surface of 85 sq. ft., and a total heating surface of 6182 sq. ft.

Another type of water-tube boiler in use for stationary purposes is the " Stirling " (fig. 12). This boiler consists of four or five horizontal drums, of which the three upper form the steam-space, and the one or two lower contain water.

The lower drums, where two are fitted, are connected to each other at about the middle of their height by horizontal tubes, and to the upper drums by numerous nearly vertical tubes which form the major portion of the heating surfaces. The central upper drum is at a slightly higher level than the others, and communicates with that nearest the back of the boiler by a set of curved tubes entirely above the water-level, and with the front drum by two sets - the upper one being above and the lower below the water-level. The whole boiler is enclosed in brickwork, into which the supporting 175 lb to 200 lb per boiler is shown in fig. io. and the heating surface 9` -.

Purves Type.

E .... - - -

9 > FIG. io. - Express Locomotive Boiler, with widened fire-box (Great Water-Tube Boilers. - The " Babcock & Wilcox " boiler, as fitted for land purposes, and illustrated in fig. II, consists of a horizontal cylinder forming a steam chest, having dished ends and two specially constructed cross-boxes riveted to the Wilcox bottom. Under the cylinder is placed a sloping nest of W tubes, under the upper end of which is the fire. The sides ary. and back of the boiler are enclosed in brickwork up to a,y the height of the centre of the horizontal cylinder and the front is fitted with an iron casing lined with brick at the lower part. Suitable brickwork baffles are arranged between the tubes themselves, and between the nests of tubes and the cylinder, to ensure a proper circulation of the products of combustion, which are made to pass between the tubes three times. The nest of tubes consists of several separate elements, each formed by a front and back header made of wrought steel of sinuous form connected by a number of tubes. The upper ends of the front headers are connected by short tubes to the front cross-box of the horizontal cylinder, the lower ends being closed. The upper ends of the back headers are connected by longer pipes to the back cross-box, and their lower ends by short pipes to a horizontal mud drum to which a blow-off cock and pipe are attached. The headers are furnished with holes on two opposite sides; those on one side form the means of connexion between the headers and tubes, and the others allow access for fixing the tubes in position and cleaning. The outer holes are oval, and closed by special fittings shown in fig. 18, the watertightness of the joints being secured by the outer cover plates. The holes being oval, the inside fitting can be placed in position from outside, and it is so made as to cover the opening and prevent any great outrush of steam or water should the bolt break. Any desired working pressure can be provided for in these boilers; in some special cases it rises as high as 500 lb per sq. in., but a more Northern Railway, England).

columns and girders are built. Brickwork baffles compel the furnace gases to take specified courses among the tubes. It will be seen that the space between the boiler front and the tubes form a large combustion chamber into which all the furnace gases must pass before they enter the spaces between the tubes; in this chamber a baffle-bridge is sometimes built. Another chamber is formed between the first and second sets of tubes. The feed-water ` enters the back upper drum, and must pass down the third set of tubes into the lower drum before it reaches the other parts of the boiler. Thus the coldest water is always where the temperature of the furnace gases is lowest; and as the current through the lower drum is slight, the solid matters separated from the feed-water while its temperature is being raised have an opportunity of settling to the bottom of this drum, where the heating is not great and where therefore their presence will not be injurious. When superheaters are required, they are made of two drums connected by numerous small tubes, and are somewhat similar in construction to the boiler proper. The superheater is placed between the first and second sets of tubes, where it is exposed to the furnace gases before too much heat has been taken from them. Arrangements are provided for flooding the superheater while steam is being raised, and for draining it before the steam is passed through it.

Brown's Arched and Ribbed Type.

Brown's Cambered Section.

A somewhat similar boiler is made by Messrs. Clarke, Chapman & Co., and is known as the "Woodeson " boiler (fig. 13). It consists of three upper drums placed side by side connected W together by numerous short tubes, some above and some below the water-level, and of three smaller lower drums also connected by short cross tubes. The upper and lower drums are connected by numerous nearly vertical straight tubes. The whole is enclosed in firebrick casing. The design permits of the insides of all the tubes being readily inspected, and also of any tube being taken out and renewed without displacing any other part of the boiler.

The earliest form of water-tube boiler which came into general use in the British navy is the Belleville. Two views of this boiler are shown in fig. 14. It is composed of two parts, the boiler proper and the " economizer." Each of these consists of several sets of elements placed side by side; those of the boiler proper are situated immediately over the fire, and those of the and except in the case of the upper and lower ones at the front of the boiler, each connects the upper end of one tube with the lower end of the next tube of the element. The boxes at the back of the boiler are all close-ended, but those at the front are provided with a small oval hole, opposite to each tube end, closed by an internal door with bolt and cross-bar; the purpose of these openings is to permit the inside of the tubes to be examined and cleaned. The lower front box of each element of the boiler proper is connected to a horizontal cross-tube of square section, called a " feed-collector," which extends the whole width of the boiler. When the boiler is not in use, any element can be readily disconnected and a spare one inserted. The lower part of the steam-chest is connected to the feed-collector by vertical pipes at each end of the boiler, and prolongations of these pipes below the level of the feed-collector form closed pockets for the collection of sediment. The tubes are made of seamless steel. They are generally about 42 in. in external diameter; the two lower rows are a in. thick, the next two rows 5 6 in., and the remainder about in. The construction of the economizer is similar to that of the boiler proper, but the tubes are shorter and smaller, being generally about 24 in. in diameter. The lower boxes of the economizer elements are connected to a horizontal feed pipe which is kept supplied with water by a feed-pumping engine, and the upper boxes are connected to another horizontal pipe from which the heated feed-water is taken into the steam-chest. Both the boiler proper and the economizer are enclosed in a casing which is formed of two thicknesses of thin iron separated by non-conducting material and lined with firebrick at the part between the fire-bar level and the lower rows of tubes. Along the front of the boiler, above the level of the firing-doors, there is a small tube having several nozzles directed across the fire-grate, and supplied with compressed air at a pressure of about to lb per sq. in. In this way not only is additional air supplied, but the gases issuing from . {1:i.,FJ'`.'?'`


FIG. i I. - Babcock & Wilcox Water-tube Boiler fitted with Superheaters.

7 r FIG. 12. - Stirling Water-tube Boiler.


??mm??9?¦,s ¦ ??®

?? ? ?_ ????? ?1?. - .....------=





??? ?/


c.. ?




? ij ?



' -













E l


1 - ..a ¦ /



T s

?? a




?'. -





- `a'

...,--a,? '.










';? .



= ?M

economizer in the uptake above the boiler, the intervening space being designed to act as a combustion chamber. Each element is constructed of a number of straight tubes connected at their ends by means of screwed joints to junction-boxes which are made of malleable cast iron. These are arranged vertically over one another, FIG. 13. - Woodeson Boiler (Messrs Clarke, Chapman & Co.).

the fire are stirred up and mixed, their combustion being thereby facilitated before they pass into the spaces between the tubes. A similar air-tube is provided for the space between the boiler proper and the economizer. Any water suspended in the steam is separated in a special separator fitted in the main steampipe, and the steam is further dried by passing through a reducingvalve, which ensures a steady pressure on the engine side of the valve, notwithstanding fluctuations of pressure in the boiler. The boiler pressure is usually maintained at about 50 lb per sq. in. in excess of that at which the engines are working, the excess forming a reservoir of energy to provide for irregular firing or feeding.

Another type of large-tube boiler which has been used in the British and in other navies is the " Niclausse," shown in fig. 15. Niclausse. It is also in use on land in several electric-light installations. It consists of a horizontal steam-chest under which is placed a number of elements arranged side by side over the fire, the whole being enclosed in an iron casing lined with firebrick where it is exposed to the direct action of the fire. Each element consists of a header of rectangular cross-section, fitted with two rows of inclined close-ended tubes, which slope downwards towards the back of the boiler with an inclination of 6° to the horizontal. The headers are usually of malleable cast iron with diaphragms cast in them, but sometimes steel has been employed, the bottoms being closed by a riveted steel plate, and the diaphragms being made of the same material. The headers are FIG. 4. - Belleville Boiler.

bolted to socket-pieces which are riveted to the bottom of the steam-chest, so that any element may be easily removed. The tube-holes are accurately bored, at an angle to suit the inclination of the tubes, through both the front and back of the headers and through the diaphragm, those in the header walls being slightly conical. The tubes themselves, which are made of seamless steel, are of peculiar construction. The lower or back ends are reduced in diameter and screwed and fitted with cap-nuts which entirely close them. The front ends are thickened by being upset, and the parts where they fit into the header walls and in the diaphragm are carefully turned to gauge. The upper and lower parts of the tubes between these fitting portions are then cut away, the side portions only being retained, and the end is termed a " lanterne." A small water-circulating tube of thin sheet steel, fitted inside each generating tube, is open at the lower end, and at the other is secured to a smaller " lanterne," which, however, only extends from the front of the header to the diaphragm. This smaller " lanterne " closes the front end of the generating tube. The whole arrangement is such that when the tubes are in place only the small inner circulating tubes communicate with the space between the front of the header and the diaphragm, while the annular spaces in the generating tubes around the water-circulating tubes communicate only with the space between the diaphragm and the back of the header. The steam formed in the tubes escapes from them into this back space, through which it rises into the steam-chest, whilst the space in the front of the header always contains a down-current of water supplying the inner circulating tubes. The tubes are maintained in position by cross-bars, each secured by one stud-bolt screwed into the header front wall, and each serving to fix two tubes. The products of combustion ascend directly from the fire amongst the tubes, and the combustion is rendered more complete by the introduction of jets of high-pressure air immediately over the fire, as in the " Belleville " boiler.

The " Diirr " boiler, in use in several vessels in the German navy, and in a few vessels of the British navy, in some respects resembles the " Niclausse." The separate headers of the latter, however, are replaced by one large water chamber formed of steel plates with welded joints, and instead of the tubes being secured by " lanternes " to two plates they are secured to the inner plate only by conical joints, the holes in the outer plate being closed by small round doors fitted from the inside. In fixing the tubes each is separately forced into its position by means of a small portable hydraulic jack. The lower ends of the caps are closed by cap-nuts made of a special heat-resisting alloy of copper and manganese. Circulation is provided for by a diaphragm in the water-chamber and by inner tubes as in the Niclausse boiler. Baffle plates are fitted amongst the tubes to ensure a circulation of the furnace gases amongst them. Above the main set of tubes is a smaller set arranged horizontally, and connected directly to the steam receiver. These are fitted with internal tubes, and an internal diaphragm is provided so that steam from the chest circulates through these tubes on its way to the stop-valves. This supplementary set of tubes is intended to serve as a superheater, but the amount of surface is not sufficient to obtain more than a very small amount of superheat.

The Yarrow boiler (fig. 16) is largely in use in the British and also in several other navies. It consists of a large cylindrical steam chest and two lower water-chambers, connected by numerous straight tubes. In the boilers for large vessels all the tubes are of 14 in. external diameter, but in the large express boilers the two rows nearest to the fire on each side are of 14 in. and the remainder of i in. diameter. They are arranged with their centres forming equilateral triangles, and are spaced so that they can be cleaned externally both from the front of the boiler and also cross-ways in two directions. In some boilers the lower part of the steam-chest is connected with the waterchambers by large pipes outside the casings with the view of improving the circulation.

The largest size o_ f single-ended large tube boiler in use has a steam drum 4 ft. 2 in. diameter, a grate area of 73.5 sq. ft. and 3750 sq. ft. of heating surface, but much larger doubleended boilers have been made, these being fired from both ends.


o oi'tie





ac t

o ED



O ??

??i? .,

I on,

d !Pa

? '??f?



^ '`








 ?' ?;. ?? ?



?5 ???? ?7 ??? ?7 ? ? ???. ? ?V? ??

Jll O 0 0 l






? Z=??- ,__J?_.?__`.

° X(?AG!9G!9G? 'Q9' --l?

? ?

??)j d a i

? l

.,,. .II



In most of the boilers made, access to the inside is obtained by manholes in the steamchest and water-chamber ends, but in the smaller sizes fitted in torpedo boats the waterchambers are too small for this, and they are each arranged in two parts connected by a bolted j oint, which makes all the tube ends accessible. The Babcock & Wilcox marine boiler (fig. 17) is much used in the American and British navies, and it has also been used in several yachts and merchant steamers. It consists of a horizontal cylindrical steam-chest placed transversely over a group of elements, beneath which is the fire, the whole being enclosed in an iron casing lined with firebrick. Each element consists of a front and back header connected by numerous water-tubes which have a considerable inclination to facilitate the circulation. The upper ends of the front headers are situated immediately under the steam-chest and are connected to it by short nipples; by a similar means they are connected at the bottom to a pipe of square section which extends across the width of the boiler. Additional connexions are made by nearly vertical tubes between this cross-pipe and the bottom of the steam-chest. The back headers are each connected at their upper ends by means of two long horizontal tubes with the steam-chest, the bottom ends of the headers being closed. The headers are made of wrought steel, and except the outer pairs, which are flat on the outer portions, they are sinuous on both sides, the sinuosities fitting into one another. The tubes are of two sizes, the two lower rows and the return tubes between the back headers and steam-chest being 3 1 g in. outside diameter, and the remaining tubes 11;1 in. The small tubes are arranged in groups of two or four to nearly all of the sinuosities of the headers, the purpose of this arrangement being to give opportunities for the furnace gases to become well mixed together, and to ensure their contact with the heating surfaces. Access for securing the tubes in the headers is provided by a hole formed on the other side of the header opposite each of the tubes, where they are grouped in fours, and by one larger hole opposite each group of two tubes. The larger holes are oval, and are closed by fittings similar to those used in the land boiler (fig. 18). The smaller holes are conical, with the larger diameter on the inside, and are closed by special conical fittings: the conical portion and bolt are one forging, and the nut is close-ended. In case of the breakage of the bolt, the fitting would be retained in place by the steam-pressure. A set of firebrick baffles is placed so as to cover rather more than half of the spaces between the upper of the two bottom rows of large tubes, and another set of baffles covers about two-thirds of the spaces between the upper small tubes. Vertical baffles are also built between the smaller tubes, as shown in the longitudinal section. These baffles compel the products of combustion to circulate among the tubes in the direction shown by the arrows. Experience has shown that this arrangement gives a better evaporative efficiency than where the furnace gases are allowed to pass unbaffled straight up between the tubes. The boilers are usually fitted in pairs placed back to back, and one side of each is always made accessible. On this side the casing is provided with FIG. 15. - Niclausse Boiler - transverse section.

numerous small doors, through any of which a steam jet can be inserted for the purpose of sweeping the tubes.

A class of water-tube boilers largely in use in torpedo-boat destroyers and cruisers, where the maximum of power is required in proportion to the total weight of the installation, is generally known as express boilers. In these the tubes are made of smaller diameter than those used in the boilers already described, and the boilers are designed to admit of a high rate of combustion of fuel obtained by a high degree of " forced draught." Of these express boilers the Yarrow is of similar construction to the large tube Yarrow boiler already described, with the exception that the tubes are smaller in diameter and much more closely arranged.

In the Normand boiler (fig. 19) there are three chambers, as in the Yarrow, connected together by a large number of bent tubes which form the heating surface, and also connected at each end by large outside circulating tubes. The two outer rows of heating tubes on each side are arranged to touch one another for nearly their whole length so as to form a " water-wall " for the protection of the outer casing. They enter the steam-chest at about the water-level. The two inner rows of tubes, which are bent to the form shown in the figure, also form a water-wall for the larger portion of the length of the boiler, and thus compel the products of combustion to pass in a definite course amongst all the tubes. In the Blechynden and White-Foster boilers there are also three chambers connected by bent tubes, the curvature being so arranged that in the former boiler any of the tubes can be taken out of the boiler through small doors provided in the upper part of the steam-chest, and in the White-Foster boiler they can be taken out through the manhole in the end of the steam-chest.

In the Reed boiler the tubes are longer and more curved than in the Normand boiler, and there are no " water-walls," the products of combustion passing from the fire-grate amongst all Reed. the tubes direct to the chimney. The special feature of the boiler is that each tube, instead of being expanded into the tube plate, is fitted at each end with specially designed screw and nut connexions to enable them to be quickly taken out and replaced if necessary. At their lower ends the tubes are reduced in diameter to enable smaller chambers to be used than would otherwise be necessary. Provision is made for access to the lower tube ends by means of numerous doors in the waterchambers. Access to the top ends is obtained in the steam-chest.

Messrs John I. Thornycroft & Co. make two forms of express boiler. One called the Thornycroft boiler consists of three Thorny- chambers connected by tubes which c roft. are straight for the major portion of their length but bent at each end to enable them to enter the steamand water-chambers normally. The outer rows of tubes form " waterwalls " at their lower parts, but permit the passage of the gases between them at their upper ends. Similarly the inner rows form " water-walls " at their upper parts, but are open at the lower ends. The products of combustion are thus compelled to pass over the whole of the heating surfaces. The fire-rows of tubes in this boiler are made i a in. outside diameter and the remainder are made i s in. diameter. Large outside circulating pipes are provided at the front end of the boiler.

In the other type of boiler, known as the Thornycroft-Schulz boiler (fig. 20), there are four chambers, and the fire-grate is arranged rn in two separate portions. The two croit outermost rows of tubes on each side Schulz are arranged to form water-walls at their lower part, and permit the gases to pass between them at the upper part. The rows nearest the fires are arranged similarly to those in the Thornycroft boiler. Circulation in the outer sets of tubes is arranged for by outer circulating pipes of large diameter connecting the steamand water-chambers. For the middle water-chamber several nearly vertical downcorners are provided in the centre of the boiler. Boilers of this type are extensively used in the British and German navies.

Material of Boilers

In ordinary land boilers and in marine boilers of all types the plates and stays are almost invariably made of mild steel. For the shell plates and for long stays, a quality having a tensile strength. ranging from 28 to 32 tons per sq. in. is usually employed, and for furnaces and flues, for plates which have to be flanged, and for short-screwed stays, a somewhat softer steel with a strength ranging from 26 to 30 tons per sq. in. is used. The tubes of ordinary land and marine boilers are usually made of lap-welded wrought iron. In water-tube boilers for naval purposes seamless steel tubes are invariably used. locomotive boilers the shells are generally of mild steel, the fire-box plates of copper (in America of steel), the fire-box side stays of copper or special bronze, and other stays of steel. The tubes are usually of brass with a composition either of two parts by weight of copper to one of zinc or 70% copper, 30% zinc; sometimes, however, copper tubes and occasionally steel tubes are used. Where water tubes are used they are made of seamless steel.

Boiler Accessories

All boilers must be provided with certain mountings and accessories. The water-level in them must be kept above the highest part of the heating surfaces. In some `.' ¦ - n ? ¦?¦ / o Express boilers. land boilers, and in some of the water-tube boilers used on shipboard, the feeding is automatically regulated by mechanism actuated by a float, but in these cases means of regulating the feed-supply by hand are also provided. In most boilers hand regulation only is relied upon. The actual level of water in the boiler is ascertained by a glass water-gauge, which consists of a glass tube and three cocks, two communicating directly with the boiler, one above and one below the desired water-level, and the third acting as a blow-out for cleaning the gauge and for testing its working. Three small try-cocks are also fitted, one just at, one above, and one below the proper water-level. The feeding of the boiler is sometimes performed by a pump driven from the main engine, sometimes by an independent steam-pump, and sometimes by means of an injector. The feed-water is admitted by a " check-valve," the lift of which is regulated by a screw and hand-wheel, and which when the feed-pump is not working is kept on its seating by the boiler pressure.

Every boiler is in addition supplied with a steam-gauge to indicate the steam-pressure, with a stop-valve for regulating the admission of steam to the steam-pipes, and with one or two safetyvalves. These last in stationary boilers usually consist of valves kept in their seats against the steam-pressure in the boiler by levers carrying weights, but in marine and locomotive boilers the valves are kept closed by means of steel springs. One at least of the safety-valves is fitted with easing gear by which it can be lifted at any time for blowing off the steam. Blow-out cocks are fitted for emptying the boiler.

Openings must always be made in boilers for access for cleaning and examination. When these are large enough to allow a man to enter the boiler they are termed man-holes. They are usually made oval, as this shape permits the doors by which they are closed to be placed on the inside so that the pressure upon them tends to keep them shut. The doors are held in place by one or two bolts, secured to cross-bars or " dogs " outside the boiler. It is important in making these doors that they should fit the holes so accurately that the jointing material cannot be forced out of its proper position. In the few cases where doors are fitted outside a boiler, so that the steam-pressure tends to open them, they are always secured by several bolts so that the breakage of one bolt will not allow the door to be forced off.


Seeing that the impurities contained in the feed-water are not evaporated in the steam they become concentrated in the boiler water. Most of them become precipitated in the boiler either in the form of mud or else as scale which forms on the heating surfaces. Some of the mud and such of the impurities as remain soluble may be removed by means of the blow-off cocks, but the scale can only be removed by periodical cleaning. Incrustations on the heating surface not only lessen the efficiency of the boiler by obstructing the transmission of heat through the plates and tubes, but if excessive they become a source of considerable danger by permitting the plates to become overheated and thereby weakened. When the feed-water is very impure, therefore, the boilers used are those which permit of very easy cleaning, such as the Lancashire, Galloway and Cornish types, to the exclusion of multitubular or water-tube boilers in which thorough cleaning is more difficult. In other cases, however, the feed-water is purified by passing it through some type of " softener " before pumping it into the boiler. Most of the impurities in ordinary feed-water are either lime or magnesia salts, which although soluble in cold water are much less so in hot water. In the " softener " measured quantities of feed-water and of some chemical reagents are thoroughly mixed and at the same time the temperature is raised either by exhaust steam or by other means. Most of the impurity is thus precipitated, and some of the remainder is converted into more soluble salts which remain in solution in the boiler until blown out. The water is filtered before being pumped into the boiler. The quantity and kind of chemical employed is determined according to the nature and amount of the impurity in the " hard " feed-water.

Thermal Storage

In some cases where the work required is very intermittent, " thermal storage " is employed. Above the boiler a large cylindrical storage vessel is placed, having sufficient capacity to contain enough feed-water to supply the boiler throughout the periods when the maximum output is required. The upper part of this storage vessel is always in free communication with the steam space of the boiler, and from the lower part of it the feed-water may be run into the boiler when required. The feed-water is delivered into the upper part of the vessel, and arrangements are made by which before it falls to the bottom of the chamber it runs over very extended surfaces exposed to the steam, its temperature being thus raised to that of the steam. At times when less than the normal supply of steam is required for the engine more than the average quantity of feed-water is pumped into the chamber, and the excess accumulates with its temperature raised to the evaporation point. When an extra supply of steam is required, the feed-pump is stopped and the boiler is fed with the hot water stored in the chamber. Besides the " storage " effect, it is found that many FIG. I 6. - Yarrow Water-tube Boiler.

of the impurities of the feed become deposited in the chamber, where they are comparatively harmless and from which they are readily removable.

Oil Separators

When the steam from the engines is condensed and used as feed-water, as is the case with marine boilers, much difficulty is often experienced with the oil which passes metallic contact between the zinc and the boiler-plate. The function of the zinc is to set up galvanic action; it plays the part of the negative metal, and is dissolved while the metal of the shell is kept electro-positive. Care must always be taken that the fragments which break off the zinc as it wastes away cannot fall upon the heating surfaces of the boiler.

00 00 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 GO 00 00 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 00 0 00 000 p 0 00 00 00 00 00 00 00000 00 00 p 0 00 Z Z

TillE ? .

: >>??????aT?aTi???.. ' 'IrrMil .. : ????? l?????it?????????????? ?....J?. .... ¦...........?......?......??

-, Longitudinal section. Section at AB - Front elevation. FIG. 17. - Babcock & Wilcox Water-tube_Boiler (marine type).

over with the steam. Feed-filters are employed to stop the coarser particles of the oil, but some of the oil becomes " emulsified " or suspended in the water in such extremely minute particles that they pass through the finest filtering materials. On the evaporation of the water in the boiler, this oil is left as a thin film upon the heating surfaces, and by preventing the actual contact of water with the plates has been the cause of serious trouble. An attempt has been made to overcome the emulsion difficulty by uniformly mixing with the water a small quantity of solution of lime. On the water being raised in temperature the lime is precipitated, and the minute particles separated apparently attract the small globules of oil and become aggregated in sufficient size to deposit themselves in quiet parts of the boiler, whence they can be occasionally removed either by blowing out or by cleaning. Much, however, still remains to be done before the oil difficulty will be thoroughly removed.


When chemicals of any kind are used to soften or purify feed-water it is essential that neither they nor the products they form should have a corrosive effect upon the boiler-plates, &c. Much of the corrosion which occasionally occurs has been traced to the action of the oxygen of the air which enters the boiler in solution in the feed-water, and the best practice now provides for the delivery of the feed into the boiler at such positions that the air evolved from it as it becomes heated passes direct to the steam space without having an opportunity of becoming disengaged upon the under-water surfaces of the boiler.

Where corrosion is feared it is usual to fit zinc slabs in the water spaces of the boiler. Experience shows that it is better to make them of rolled rather than of cast zinc, and to secure them on studs which can be kept bright, so as to ensure a direct Evaporators. - In marine boilers the waste of water which occurs from leakages in the cycle of the evaporation in the boiler, use in the engine, condensation in the condenser and return to the boiler as feed-water, is made up by fresh water distilled from sea-water in " evaporators. " Of these there are many forms with different provisions for cleaning the coils, but they are all identical in principle. They are fed with sea-water, and means are provided for blowing out the brine produced in them when some of the water is evaporated. The heat required for the evaporation is obtained from live steam from the boilers, which is admitted into coils of copper pipe. The water condensed in these coils is returned direct to the feedwater, and the steam evaporated from the sea-water is led either into the low-pressure receiver of the steam-engine or into the condenser.

Efficiency of Boilers

The useful work obtained from any boiler depends upon many considerations. For a high efficiency, that is, a large amount of steam produced in proportion to the amount of fuel consumed, different conditions have to be fulfilled from those required where a large output of steam from a given plant is of more importance than economy of fuel. For a high efficiency, completeness of combustion of fuel must be combined with sufficient heating surface to absorb so much of the heat FIG. 18. - Handhole Fittings.

produced as will reduce the temperature of the funnel gases to nearly that of steam. Completeness of combustion can only be obtained by admitting considerably more air to the fire than is theoretically necessary fully to oxidize the combustible portions of the fuel, and by providing sufficient time and opportunity for a thorough mixture of the air and furnace gases to take place before the temperature is lowered to that critical point below which combustion will not take place. It is generally considered that the amount of excess air required is nearly equal to that theoretically necessary; experience, however, tends to show that much less than this is really required if proper means are provided for ensuring an early complete mixture of the gases. Different means are needed to effect this with different kinds of coal, those necessary for properly burning Welsh coal being altogether unsuitable for use with North Country or Scottish coal. As all the excess air has to be raised to the same temperature as that of the really burnt gases, it follows that an excess of air passing through the fire lowers the temperature in the fire and flues, and therefore lessens the heat transmission; and as it leaves the boiler at a high temperature it carries off some of the heat produced. A reduction of the amount of air, therefore, may, by increasing the fire temperature purposes, although " natural " draught is the more common, many boiler installations are fitted with " forced " draught arrangements. Two distinct systems are used. In that known as the " closed stokehold " the stokehold compartment of the vessel is so closed that the only exit for air from it is through the fires. Air is driven into the stokehold by means of fans which are made so that they can maintain an air pressure in the stokehold above that of the outside atmosphere. This is the system almost universally adopted in war vessels, and it is used also in some fast passenger ships. The air pressure usually adopted in large vessels is that corresponding to a height of from 1 to i z in. of water, whilst so much as 4 in. is sometimes used in torpedo-boats and similar craft. This is, of course, in addition to the chimney-draught due to the height of the funnel. In the closed ashpit or Howden system, the stokehold is open, and fans drive the air round a number of tubes, situated in the uptake, through which the products of combustion pass on their way to the chimney. The air thus becomes heated, and part of it is then delivered into the ashpit below the fire and part into a casing round the furnace front from which it enters the furnace above the fire. In locomotive boilers the draught is produced by the blast or the exhaust steam. With natural draught a "??I????????!nn w a N??mm? iii i ? ? ????? ?? ii ?

FIG. 19. - Normand Boiler.

and lessening the chimney waste, actually increase the efficiency even if at the same time it is accompanied by a slight incompleteness of combustion.

Mechanical Stoking

Most boilers are hand-fired, a system involving much labour and frequent openings of the furnace doors, whereby large quantities of cold air are admitted above the fires. Mamy systems of mechanical stoking have been tried, but none has been found free from objections. That most usually employed is known as the " chain-grate " stoker. In this system, which is illustrated in fig. 13 (Woodeson boiler), the grate consists of a wide endless chain formed of short cast-iron bars; this passes over suitable drums at the front and back of the boiler, by the slow rotation of which the grate travels very slowly from front to back. The coal, which is broken small, is fed from a hopper over the whole width of the grate, the thickness of the fire being regulated by a door which can be raised or lowered as desired. Thus the volatile portions of the coal are distilled at the front of the fire, and pass over the incandescent fuel at the back end. The speed of travel is so regulated that by the time the remaining parts of the fuel reach the back end the combustion is nearly complete. It will be seen that the fire becomes thinner towards the back, and too much air is prevented from entering the thin portion by means of vanes actuated from the front of the boiler.


In most boilers the draught necessary for combustion is " natural," i.e. produced by a chimney. For marine combustion of about 15 to 20 lb. of coal per sq. ft. of grate area. per hour can be obtained. With forced draught much greater rates can be maintained, ranging from 20 lb to 35 lb in the larger vessels with a moderate air pressure, to as much as 70 and even 80 lb per sq. ft. in the express types of boiler used in torpedo boats and similar craft.

Performance of Boilers

The makers of several types of boilers have published particulars regarding the efficiency of the boilers. they construct, but naturally these results have been obtained under the most favourable circumstances which may not always represent the conditions of ordinary working. The following table of actual results of marine boiler trials, made at the instance of the British admiralty, is particularly useful becuase the trials were made with great care under working conditions, the whole of the coal being weighed and the feed-water measured throughout the trials by skilled observers. The various trials can be compared amongst themselves as South Welsh coal of excellent quality was used in all cases.

Description of Boiler.



sq. ft.

Heating Surface


sq. ft.


of Trial




per sq. ft.

of Grate


in Stoke-


Inches of



Inches of


??'ater Evaporated

per lb. of Coal.

e apor-

ated per

sq. ft. of



Units per

lb of Coal.





From and

per Hour.



at 212 - F.




Ordinary cylindrical single-












ended; 3 furnaces; 155 lb






4'3 2


68 o

working pressure; closed






9.2 7

8.4 6



stokehold system










Ordinary cylindrical single

ended; 3 furnaces; 210 lb

working pressure; closed

ashpit, Howden system


2876 in boiler,

766 in air




In Ash



O 58

Ii .30

12 '33

5' 1 4



Niclausse Water Tube; 160 Lb












Working Pressure



2 I .9




8 Oi




6 I I



1 4,600














Niclausse Water Tube; 250 Lb










Working Pressure




Not Ascer







Babcock Water Tube; 3 Pa In.








4.3 0

1 4,59 0


Tubes; 260 Lb Working









Not Ascer




Io Ii






67 O

63. I






10 61




Babcock Water Tube; 11 In









10 '59

Ii 04



1 4,39 0



75 8

Tubes; 270 Lb Working :

Pressure 3




Not Ascer



9' 88








Io 11


6 Oi

1 4,53 0




0 66








Blleville Water Tube With


910 In Boiler






11.4 6


1 4, 6 97


Economizers; 320

Working Pressure

447 In Econo


1357 Total














I I 00





7.7 8


1 4,57 8


71 8


65 O

R 56













3.3 0

1 4 75 0

1 4,5 00



Yarrow Water Tube; 14 In.






3.6 3



Tubes; 250 Lb Working






Io 59

6 ' 0 4

1 4,43 0





0 86


















O 82





1 4,53 O



' 26





9.5 O

3.2 4








14,62 0

61 7

D Urr Water Tube; 250 Lb

2671 In Boiler,

1 4 0 In Super



21 1










6 '59


1 4,57 0



Working Pressure


2811 Total









8 02















8 06

6 02




















In experimental tests such as those above referred to, many conditions have to be taken into account, the principal being the duration of the trial. It is essential that the condition of the boiler at the conclusion of the test should be precisely the same as at the commencement, both as regards the quantity of unconsumed coals on the fire-grate and the quantity of water and the steam-pressure in the boiler. The longer the period over which the observations are taken the less is the influence of errors in the estimation of these particulars. Further, in order properly to represent working conditions, the rate of combustion of the fuel throughout the trial must be the same as that intended to be used in ordinary working, and the duration of the test must be sufficient to include proportionately as much cleaning of fires as would occur under the normal working conditions. The tests should always be made with the kind of coal intended to be generally used, and the records should include a test of the calorific value of a sample of the fuel carefully selected so as fairly be conveniently treated together, because similar materials and methods are employed in each, notwithstanding that many points of divergence in practice generally relegate them to separate departments. The materials used are chiefly iron and steel. The methods mostly adopted are those involved in the working of plates and rolled sections, which vastly predominate over the bars and rods used chiefly in the smithy. But there are numerous differences in methods of construction. Flanging occupies a large place in boilermaking, for end-plates, tube-plates, furnace Trials Of Various Types Of Marine Boilers In the first three trials no retarders were used in the tubes. In the last trial retarders were used.

2 In this trial retarders were used in the tubes.

3 The first four trials were made with horizontal baffles above the tubes; the last two trials with the baffling described in the text.

to represent the bulk of the coal used during the trial. The periodic records taken are the weights of the fuel used and of the ashes, &c., produced, the temperature and quantity of the feed-water, the steam pressure maintained, and the wetness of the steam produced. This last should be ascertained from samples taken from the steam pipe at a position where the full pressure is maintained. In order to reduce to a common standard observations taken under different conditions of feed temperatures and steam pressures, the results are calculated to an equivalent evaporation at the atmospheric pressure from a feed temperature of 212° F. (J. T. Mi.)

<< Boileau

Boiler making >>


Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

See also boiler


German Wikipedia has an article on:

Wikipedia de


Boiler m. (genitive Boilers, plural Boiler)

  1. (tank-type) water heater


Got something to say? Make a comment.
Your name
Your email address