The Full Wiki

Cadmium: Wikis

Advertisements
  
  
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Cadmium

Include this on your site/blog:

Encyclopedia

Advertisements

From Wikipedia, the free encyclopedia

silvercadmiumindium
Zn

Cd

Hg
Appearance
silvery gray metallic
General properties
Name, symbol, number cadmium, Cd, 48
Element category transition metal
Category notes Alternatively considered a post-transition metal
Group, period, block 125, d
Standard atomic weight 112.411g·mol−1
Electron configuration [Kr] 5s2 4d10
Electrons per shell 2, 8, 18, 18, 2 (Image)
Physical properties
Phase solid
Density (near r.t.) 8.65 g·cm−3
Liquid density at m.p. 7.996 g·cm−3
Melting point 594.22 K, 321.07 °C, 609.93 °F
Boiling point 1040 K, 767 °C, 1413 °F
Heat of fusion 6.21 kJ·mol−1
Heat of vaporization 99.87 kJ·mol−1
Specific heat capacity (25 °C) 26.020 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 530 583 654 745 867 1040
Atomic properties
Oxidation states 2, 1 (mildly basic oxide)
Electronegativity 1.69 (Pauling scale)
Ionization energies 1st: 867.8 kJ·mol−1
2nd: 1631.4 kJ·mol−1
3rd: 3616 kJ·mol−1
Atomic radius 151 pm
Covalent radius 144±9 pm
Van der Waals radius 158 pm
Miscellanea
Crystal structure hexagonal
Magnetic ordering diamagnetic[1]
Electrical resistivity (22 °C) 72.7 nΩ·m
Thermal conductivity (300 K) 96.6 W·m−1·K−1
Thermal expansion (25 °C) 30.8 µm·m−1·K−1
Speed of sound (thin rod) (20 °C) 2310 m/s
Young's modulus 50 GPa
Shear modulus 19 GPa
Bulk modulus 42 GPa
Poisson ratio 0.30
Mohs hardness 2.0
Brinell hardness 203 MPa
CAS registry number 7440-43-9
Most stable isotopes
Main article: Isotopes of cadmium
iso NA half-life DM DE (MeV) DP
106Cd 1.25% >9.5×1017 y εε2ν - 106Pd
107Cd syn 6.5 h ε 1.417 107Ag
108Cd 0.89% >6.7×1017 y εε2ν - 108Pd
109Cd syn 462.6 d ε 0.214 109Ag
110Cd 12.49% 110Cd is stable with 62 neutrons
111Cd 12.8% 111Cd is stable with 63 neutrons
112Cd 24.13% 112Cd is stable with 64 neutrons
113Cd 12.22% 7.7×1015 y β 0.316 113In
113mCd syn 14.1 y β 0.580 113In
IT 0.264 113Cd
114Cd 28.73% >9.3×1017 y ββ2ν - 114Sn
115Cd syn 53.46 h β 1.446 115In
116Cd 7.49% 2.9×1019 y ββ2ν - 116Sn

Cadmium (pronounced /ˈkædmiəm/, KAD-mee-əm) is a chemical element with the symbol Cd and atomic number 48. The soft, bluish-white metal is chemically similar to the two other metals in group 12, zinc and mercury. Similar to zinc it prefers oxidation state +2 in most of its compounds and similar to mercury it shows a low melting point compared to transition metals. Cadmium and its congeners are not considered transition metals, in that they do not have partly filled d or f electron shells in the elemental or common oxidation states.[2] Cadmium is a relatively abundant element. Cadmium was discovered in 1817 by Friedrich Stromeyer as an impurity in zinc carbonate.

Cadmium occurs as a minor component in most zinc ores and therefore is a by-product of zinc production. Cadmium was for a long time used as pigment and for corrosion resistant plating on steel. Cadmium compounds were used to stabilize plastic. With the exception of its use in nickel-cadmium batteries and cadmium telluride solar panels, the use of cadmium is generally decreasing in all other applications. This decrease is due to the high toxicity and carcinogenicity of cadmium and the associated health and environmental concerns. Although cadmium is toxic, one enzyme, a carbonic anhydrase with cadmium as reactive centre has been discovered.

Contents

Characteristics

Physical

Cadmium is a soft, malleable, ductile, bluish-white bivalent metal. It is similar in many respects to zinc but forms more complex compounds.

Chemical

The most common oxidation state of cadmium is +2, though rare examples of +1 can be found. Cadmium burns in air to form brown amorphous cadmium oxide (CdO). The crystalline form of the same compound is dark red and changes color when heated, similar to zinc oxide. Hydrochloric acid, sulfuric acid and nitric acid dissolve cadmium by forming cadmium chloride (CdCl2) cadmium sulfate (CdSO4) or cadmium nitrate (Cd(NO3)2). The oxidation state +1 can be reached by dissolving cadmium in a mixture of cadmium chloride and aluminium chloride, forming the Cd22+ cation, which is similar to the Hg22+ cation in mercury(I) chloride.[3]

Cd + CdCl2 + 2 AlCl3 → Cd2[AlCl4]2

Isotopes

The cadmium-113 total cross section clearly showing the cadmium cutoff.

Naturally occurring cadmium is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decay is not observed, due to extremely long half-life times. The two natural radioactive isotopes are 113Cd (beta decay, half-life is 7.7 × 1015 years) and 116Cd (two-neutrino double beta decay, half-life is 2.9 × 1019 years). The other three are 106Cd, 108Cd (double electron capture), and 114Cd (double beta decay); only lower limits on their half-life times have been set. At least three isotopes - 110Cd, 111Cd, and 112Cd - are stable. Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours, and the majority of these have half-lives that are less than 5 minutes. This element also has 8 known meta states, with the most stable being 113mCd (t½ 14.1 years), 115mCd (t½ 44.6 days), and 117mCd (t½ 3.36 hours).

The known isotopes of cadmium range in atomic mass from 94.950 u (95Cd) to 131.946 u (132Cd). For isotopes lighter than 112 u, the primary decay mode is electron capture and the dominant decay product is element 47 (silver). Heavier isotopes decay mostly through beta emission producing element 49 (indium).

One isotope of cadmium, 113Cd, absorbs neutrons with very high probability if they have an energy below the cadmium cut-off and transmits them readily otherwise. The cadmium cut-off is about 0.5 eV.[4] Neutrons with energy below the cutoff are deemed slow neutrons, distinguishing them from intermediate and fast neutrons.

History

Cadmium (Latin cadmia, Greek καδμεία meaning "calamine", a cadmium-bearing mixture of minerals, which was named after the Greek mythological character, Κάδμος Cadmus) was discovered in Germany in 1817 by Friedrich Stromeyer.[5] Stromeyer found the new element as an impurity in zinc carbonate (calamine), and, for 100 years, Germany remained the only important producer of the metal. The metal was named after the Latin word for calamine, since the metal was found in this zinc compound. Stromeyer noted that some impure samples of calamine changed color when heated but pure calamine did not. He was persistent in studying these results and eventually isolated cadmium metal by roasting and reduction of the sulfide. Even though cadmium and its compounds are highly toxic, the British Pharmaceutical Codex from 1907 states that cadmium iodide was used as a medication to treat "enlarged joints, scrofulous glands,[6] and chilblains".

In 1927, the International Conference on Weights and Measures redefined the meter in terms of a red cadmium spectral line (1m = 1,553,164.13 wavelengths).[7] This definition has since been changed (see krypton).

After the industrial scale production of cadmium started in the 1930s and 1940s the major application was the coating of steel and copper alloys to prevent corrosion. In 1944 62% and in 1956 59% of the cadmium in the United States was used for this purpose.[8] The second application was red and yellow pigments based on sulfides and selenides of cadmium. In 1956 24% of the cadmium used within the United States was used for this purpose.[8] The stabilizing effect of cadmium containing chemicals on plastics led to a increased use of those compounds in the 1970s and 1980s. The use of Cadmium in all applications mentioned above declined drastically due to environmental and health regulations from 1980 on. In 2006 only 7% of the cadmium is used for plating and coating and only 10% is used for pigments. The decrease in the consumption in other applications was made up by a growing demand of cadmium in nickel-cadmium batteries, which accounted for 81% of the cadmium consumption in the United States in 2006. The overall consumption of cadmium has decreased by more than 10 times from the 1970s till 2009.[9]

Occurrence

Cadmium metal

Cadmium-containing ores are rare and are found to occur in small quantities. However, traces do naturally occur in phosphate, and have been shown to transmit in food through fertilizer application.[10] Greenockite (CdS), the only cadmium mineral of importance, is nearly always associated with sphalerite (ZnS). As a consequence, cadmium is produced mainly as a byproduct from mining, smelting, and refining sulfide ores of zinc, and, to a lesser degree, lead and copper. Small amounts of cadmium, about 10% of consumption, are produced from secondary sources, mainly from dust generated by recycling iron and steel scrap. Production in the United States began in 1907, but it was not until after World War I that cadmium came into wide use.

One place where metallic cadmium can be found is the Vilyuy River basin in Siberia.[11]

Extraction

World production trend
Cadmium output in 2005

In 2001, China was the top producer of cadmium with almost one-sixth world share closely followed by South Korea and Japan, reports the British Geological Survey.

Cadmium is a common impurity in zinc ores, and it is most often isolated during the production of zinc. Some zinc ores concentrates from sulfidic zinc ores contain up to 1.4% of cadmium.[12] In 1970s the output of cadmium was 6.5 pounds per ton of zinc.[12] Zinc sulfide ores are roasted in the presence of oxygen, converting the zinc sulfide to the oxide. Zinc metal is produced either by smelting the oxide with carbon or by electrolysis in sulfuric acid. Cadmium is isolated from the zinc metal by vacuum distillation if the zinc is smelted, or cadmium sulfate is precipitated out of the electrolysis solution.[13]

Applications

Batteries

Ni-Cd batteries

About three-quarters of all the cadmium is used in batteries, predominantly in rechargeable nickel-cadmium batteries. Nickel-cadmium cells have a nominal cell potential of 1.2 V. The cell consists of a positive nickel hydroxide electrode and a negative cadmium electrode plate separated by an alkaline electrolyte (potassium hydroxide). The introduction of nickel-metal hydride batteries, with superior charge density and lower toxicity, has reduced the use of Ni-Cd batteries. The European Union banned the use of cadmium in electronics in 2004 with several exceptions but reduced the allowed content of cadmium in electronics to 0.002%.[14]

Jewelry

Reports of high levels of cadmium use in children's jewelry in 2010 led to a US Consumer Product Safety Commission investigation. [15] Twelve percent of the 103 items tested from New York, Ohio, Texas and California contained at least 10 percent cadmium, with a single item test claimed to be 91 percent cadmium. [16]

Other uses

Violet light from a helium cadmium metal vapor laser. The highly monochromatic color arises from the 441.563 nm transition line of cadmium.
Train painted with cadmium orange
A photograph and representative spectrum of photoluminescence from colloidal CdSe quantum dots.

Most of cadmium which is not consumed in battery production is used mainly for cadmium pigments, coatings and plating, and as stabilizers for plastics. Other uses include:

  • In some of the lowest-melting alloys, such as Wood's metal.
  • In bearing alloys, due to a low coefficient of friction and very good fatigue resistance.[17]
  • In electroplating (6% cadmium).[17] Cadmium electroplating is widely used in aircraft industry due to the excellent corrosion resistance of cadmium-plated steel components. Cadmium provides cathodic protection to low-alloyed steels, since it is positioned lower in the galvanic series. The coating is usually passivated by chromate salts. A significant limitation of cadmium plating is hydrogen embrittlement of high-strength steels caused by the electroplating process. Therefore, steel parts heat-treated to tensile strength above 1300 MPa (200 ksi) should be coated by an alternative method (such as special low-embrittlement cadmium electroplating processes or physical vapor deposition). In addition, titanium embrittlement caused by cadmium-plated tool residues resulted in banishment of these tools (along with routine tool testing programs to detect any cadmium contamination) from the A-12/SR-71 and U-2 programs, and subsequent aircraft programs using titanium. CIA - Breaking Through Technological Barriers - Finding The Right Metal (A-12 program)
  • In many kinds of solder.[17]
  • Helium-cadmium lasers are a popular source of blue-ultraviolet laser light. They operate either at 325 or 422 nm and are used in fluorescence microscopes and various laboratory experiment.[18]
  • Cadmium is used as a barrier to control neutrons in nuclear fission.[17]
  • The pressurized water reactor designed by Westinghouse Electric Company uses an alloy consisting of 80% silver, 15% indium, and 5% cadmium.[17]
  • Cadmium oxide in black and white television phosphors and in the blue and green phosphors for color television picture tubes.[19]
  • Cadmium sulfide (CdS) as a photoconductive surface coating for photocopier drums.
  • In paint pigments, cadmium forms various salts, with CdS being the most common. This sulfide is used as a yellow pigment. Cadmium selenide can be used as red pigment, commonly called cadmium red. To painters who work with the pigment, cadmium yellows, oranges, and reds are the most potent colors to use. In fact, during production, these colors are significantly toned down before they are ground with oils and binders, or blended into watercolors, gouaches, acrylics, and other paint and pigment formulations. These pigments are toxic, and it is recommended to use a barrier cream on the hands to prevent absorption through the skin when working with them.
  • Cadmium selenide quantum dots emit bright luminescence under UV excitation (He-Cd laser, for example). The color of this luminescence can be green, yellow or red depending on the particle size. Colloidal solutions of those particles are used for imaging of biological tissues and solutions with a fluorescence microscope.[20]
  • Cadmium is a component of some compound semiconductors, such as cadmium sulfide, cadmium selenide, and cadmium telluride, which can be used for light detection or solar cells. HgCdTe is sensitive to infrared.
  • In PVC as stabilizers.
  • In molecular biology, cadmium is used to block voltage-dependent calcium channels from fluxing calcium ions, as well as in hypoxia research to stimulate proteasome-dependent degradation of Hif-1α.[21]

Biological role

A role of cadmium in biology has been recently discovered. A cadmium-dependent carbonic anhydrase has been found in marine diatoms. Cadmium does the same job as zinc in other anhydrases, but the diatoms live in environments with very low zinc concentrations, thus biology has taken cadmium rather than zinc, and put it to work. The discovery was made using X-ray absorption fluorescence spectroscopy (XAFS), and cadmium was characterized by noting the energy of the X-rays that were absorbed.[22][23]

Toxicity

Cadmium poisoning is an occupational hazard associated with industrial processes such as metal plating and the production of nickel-cadmium batteries, pigments, plastics, and other synthetics. The primary route of exposure in industrial settings is inhalation. Inhalation of cadmium-containing fumes can result initially in metal fume fever but may progress to chemical pneumonitis, pulmonary edema, and death.[24]

Cadmium is also a potential environmental hazard. Human exposures to environmental cadmium are primarily the result of the burning of fossil fuels and municipal wastes.[25] However, there have been notable instances of toxicity as the result of long-term exposure to cadmium in contaminated food and water. In the decades leading up to World War II, Japanese mining operations contaminated the Jinzu River with cadmium and traces of other toxic metals. As a consequence, cadmium accumulated in the rice crops growing along the riverbanks downstream of the mines. The local agricultural communities consuming the contaminated rice developed Itai-itai disease and renal abnormalities, including proteinuria and glucosuria.[26] Cadmium is one of six substances banned by the European Union's Restriction on Hazardous Substances (RoHS) directive, which bans certain hazardous substances in electronics.

Cadmium and several cadmium-containing compounds are known carcinogens and can induce many types of cancer.[27]

Research has found that cadmium toxicity may be carried into the body by zinc binding proteins; in particular, proteins that contain zinc finger protein structures. Zinc and cadmium are in the same group on the periodic table, contain the same common oxidation state (+2), and when ionized are almost the same size. Due to these similarities, cadmium can replace zinc in many biological systems, in particular, systems that contain softer ligands such as sulfur. Cadmium can bind up to ten times more strongly than zinc in certain biological systems, and is notoriously difficult to remove. In addition, cadmium can replace magnesium and calcium in certain biological systems, although these replacements are rare.

Tobacco smoking is the most important single source of cadmium exposure in the general population. It has been estimated that about 10% of the cadmium content of a cigarette is inhaled through smoking. The absorption of cadmium from the lungs is much more effective than that from the gut, and as much as 50% of the cadmium inhaled via cigarette smoke may be absorbed.[28]

On average, smokers have 4-5 times higher blood cadmium concentrations and 2-3 times higher kidney cadmium concentrations than non-smokers. Despite the high cadmium content in cigarette smoke, there seems to be little exposure to cadmium from passive smoking. No significant effect on blood cadmium concentrations could be detected in children exposed to environmental tobacco smoke.[29]

See also

References

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ Advanced Inorganic Chemistry F. Albert Cotton et al. 6th Edition John Wiley and Sons, Inc. Copyright 1999 Toronto Chapter 16: Survey of Transition-Metal Chemistry p. 633
  3. ^ Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils; (1985) (in German). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 3-11-007511-3. 
  4. ^ Knoll, G.F. (1999). Radiation Detection and Measurement, 3rd edition. Wiley. p. 505. ISBN 978-0471073383. 
  5. ^ Hermann (1818). "Noch ein schreiben über das neue Metall(Another letter about the new metal)". Annalen der Physik 59: 113. http://gallica.bnf.fr/ark:/12148/bpt6k150680/f125.chemindefer. 
  6. ^ Dunglison, Robley (1866). Medical Lexicon: A Dictionary of Medical Science. Henry C. Lea. pp. 159. http://books.google.com/books?id=PmohO5jV2YsC. 
  7. ^ Burdun, G. D. (1958). "On the new determination of the meter" (pdf). Measurement Techniques 1 (3): 259–264. doi:10.1007/BF00974680. http://www.springerlink.com/content/tk70442064438147/fulltext.pdf?page=1. 
  8. ^ a b Lansche, Arnold M.. "Minerals Yearbook 1956: Cadmium". United States Geological Survey. http://digicoll.library.wisc.edu/cgi-bin/EcoNatRes/EcoNatRes-idx?type=turn&entity=EcoNatRes.MinYB1956v1.p0289&id=EcoNatRes.MinYB1956v1&isize=XL&q1=cadmium. Retrieved 2008-04-21. 
  9. ^ "USGS Commodity Report cadmium". United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/cadmium/. Retrieved 2009-08-08. 
  10. ^ Jiao, You; Grant, Cynthia A; Bailey, Loraine D (2004). "Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat". Journal of the Science of Food and Agriculture 84 (8): 777–785. doi:10.1002/jsfa.1648. 
  11. ^ Fleischer, Michael (1980). "New Mineral Names". American Mineralogist 65: 1065–1070. http://www.minsocam.org/ammin/AM65/AM65_1065.pdf. 
  12. ^ a b National Research Council (U.S.), Panel on Cadmium, Committee on Technical Aspects of Critical and Strategic Material (1969). Trends in Usage of Cadmium: Report. National Research Council, National Academy of Sciences-National Academy of Engineering. pp. 1–3. http://books.google.com/books?id=okArAAAAYAAJ. 
  13. ^ Cadmium at WebElements.com
  14. ^ "Battery collection;recycling, nature protected". http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+IM-PRESS+20060628BRI09328+FULL-TEXT+DOC+XML+V0//EN. Retrieved 2008-11-04. 
  15. ^ "AP INVESTIGATION: Tests reveal toxic cadmium in kids' jewelry from China; US to investigate". The Canadian Press:. 2010-01-11. http://www.google.com/hostednews/canadianpress/article/ALeqM5hk1OO8n4-6nNLKxewsoh1inWgQTg. Retrieved 2010-01-11. 
  16. ^ "U.S. to Develop Safety Standards for Toxic Metals". Business Week. 2010-01-12. http://www.businessweek.com/news/2010-01-12/u-s-to-develop-safety-standards-for-toxic-metals-update1-.html. Retrieved 2010-01-12. 
  17. ^ a b c d e Scoullos, Michael J.; Vonkeman, Gerrit H.; Thornton, Iain; Makuch, Zen (2001). Mercury, Cadmium, Lead: Handbook for Sustainable Heavy Metals Policy and Regulation. Springer. ISBN 9781402002243. http://books.google.com/books?id=9yzN-QGag_8C. 
  18. ^ Helium-Cadmium Lasers, Olympus
  19. ^ Lee, Ching-Hwa; Hsi, CS (2002). "Recycling of Scrap Cathode Ray Tubes". Environmental Science and Technology 36 (1): 69–75. doi:10.1021/es010517q. PMID 11811492. 
  20. ^ "Cadmium Selenium Testing for Microbial Contaminants". NASA. http://mix.msfc.nasa.gov/abstracts.php?p=3906. 
  21. ^ Park JW, Chun YS (2000). "Cadmium blocks hypoxia-inducible factor (HIF)-1-mediated response to hypoxia by stimulating the proteasome-dependent degradation of HIF-1alpha.". European Journal of Biochemistry 267 (13): 4198-4204. doi:10.1046/j.1432-1327.2000.01453.x. PMID 10866824. 
  22. ^ Lane, Todd W.; Morel, FM (2000). "A biological function for cadmium in marine diatoms". Proc. Natl. Acad. Sci. 97 (9): 4627–4631. doi:10.1073/pnas.090091397. PMID 10781068.& PMC 18283. http://www.pnas.org/content/97/9/4627.full.pdf+html. 
  23. ^ Lane, Todd W.; Saito, Mak A.; George, Graham N.; Pickering, Ingrid J.; Prince, Roger C.; Morel, François M. M. (2005). "A cadmium enzyme from a marine diatom". Nature 435 (42): 42. doi:10.1038/435042a. http://www.whoi.edu/cms/files/msaito/2005/5/LaneSaitoMorel_CdCA_Nature2005_2944.pdf. 
  24. ^ Hayes, Andrew Wallace (2007). Principles and Methods of Toxicology. Philadelphia: CRC Press. pp. 858–861. http://books.google.com/books?id=vgHXTId8rnYC&dq. 
  25. ^ "EPA summary on cadmium". U.S. Environmental Protection Agency. http://www.epa.gov/ttn/atw/hlthef/cadmium.html. Retrieved 2008-04-21. 
  26. ^ Nogawa, Koji; Kobayashi, E; Okubo, Y; Suwazono, Y (2004). "Environmental cadmium exposure, adverse effects, and preventative measures in Japan". Biometals 17 (5): 581–587. doi:10.1023/B:BIOM.0000045742.81440.9c. PMID 15688869. http://www.springerlink.com/content/n0773057mw738u05/. 
  27. ^ "11th Report on Carcinogens". National Toxicology Program. http://ntp.niehs.nih.gov/index.cfm?objectid=32BA9724-F1F6-975E-7FCE50709CB4C932. Retrieved 2008-04-21. 
  28. ^ Friberg, L. (1983). "Cadmium". Annual Review of Public Health 4: 367–367. doi:10.1146/annurev.pu.04.050183.002055. 
  29. ^ Jarup, L. (1998). "Health effects of cadmium exposure—a review of the literature and a risk estimate". Scandinavian Journal of Work, Environment and Health 24: 11–51. 

External links


1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

Medical warning!
This article is from the 1911 Encyclopaedia Britannica. Medical science has made many leaps forward since it has been written. This is not a site for medical advice, when you need information on a medical condition, consult a professional instead.

CADMIUM (symbol Cd, atomic weight I12.4 (0=16)), a metallic element, showing a close relationship to zinc, with which it is very frequently associated. It was discovered in 1817 by F. Stromeyer in a sample of zinc carbonate from which a specimen of zinc oxide was obtained, having a yellow colour, although quite free from iron; Stromeyer showing that this coloration was due to the presence of the oxide of a new metal. Simultaneously Hermann, a German chemical manufacturer, discovered the new metal in a specimen of zinc oxide which had been thought to contain arsenic, since it gave a yellow precipitate, in acid solution, on the addition of sulphuretted hydrogen. This supposition was shown to be incorrect, and the nature of the new element was ascertained.

Cadmium does not occur naturally in the uncombined condition, and only one mineral is known which contains it in any appreciable quantity, namely, greenockite, or cadmium sulphide, found at Greenock and at Bishopton in Scotland, and in Bohemia and Pennsylvania. It is, however, nearly always found associated with zinc blende, and with calamine, although only in small quantities.

The metal is usually obtained from the flue-dust (produced during the first three or four hours working of a zinc distillation) which is collected in the sheet iron cones or adapters of the zinc retorts. This is mixed with small coal, and when redistilled gives an enriched dust, and by repeating the process and distilling from cast iron retorts the metal is obtained. It can be purified by solution in hydrochloric acid and subsequent precipitation by metallic zinc.

Cadmium is a white metal, possessing a bluish tinge, and is capable of taking a high polish; on breaking, it shows a distinct fibrous fracture. By sublimation in a current of hydrogen it can be crystallized in the form of regular octahedra; it is slightly harder than tin, but is softer than zinc, and like tin, emits a crackling sound when bent. It is malleable and can be rolled out into sheets. The specific gravity of the metal is 8.564, this value being slightly increased after hammering; its specific heat is 0.0548 (R. Bunsen), it melts at 310-320° C. and boils between 763-772° C. (T. Carnelley), forming a deep yellow vapour. The cadmium molecule, as shown by determinations of the density of its vapour, is monatomic. The metal unites with the majority of the heavy metals to form alloys; some of these, the so-called fusible alloys, find a useful application from the fact that they possess a low melting-point. It also forms amalgams with mercury, and on this account has been employed in dentistry for the purpose of stopping (or filling) teeth. The metal is quite permanent in dry air, but in moist air it becomes coated with a superficial layer of the oxide; it burns on heating to redness, forming a brown coloured oxide; and is readily soluble in mineral acids with formation of the corresponding salts. Cadmium vapour decomposes water at a red heat, with liberation of hydrogen, and formation of the oxide of the metal.

Cadmium oxide, CdO, is a brown powder of specific gravity 6.5, which can be prepared by heating the metal in air or in oxygen; or by ignition of the nitrate or carbonate; by heating the metal to a white heat in a current of oxygen it is obtained as a dark red crystalline sublimate. It does not melt at a white heat, and is easily reduced to the metal by heating in a current of hydrogen or with carbon. It is a basic oxide, dissolving readily in acids, with the formation of salts, somewhat analogous to those of zinc.

Cadmium hydroxide, Cd(OH) 2, is obtained as a white precipitate by adding potassium hydroxide to a solution of any soluble cadmium salt. It is decomposed by heat into the oxide and water, and is soluble in ammonia but not in excess of dilute potassium hydroxide; this latter property serves to distinguish it from zinc hydroxide.

The chloride,CdC1 2 ,bromide,CdBr 2 ,and iodide,Cdl2,arealsoknown, cadmium iodide being sometimes used in photography, as it is one of the few iodides which are soluble in alcohol. Cadmium chloride and iodide have been shown to behave in an anomalous way in aqueous solution (W. Hittorf, Pogg. Ann., 1859, 106, 513), probably owing to the formation of complex ions; the abnormal behaviour apparently diminishing as the solution becomes more and more dilute, until, at very high dilutions the salts are ionized in the normal manner.

Cadmium sulphate, CdSO 4, is known in several hydrated forms; being deposited, on spontaneous evaporation of a concentrated aqueous solution, in the form of large monosymmetric crystals of composition 3CdSO 4.8H 2 O, whilst a boiling saturated solution, to which concentrated sulphuric acid has been added, deposits crystals of composition CdSO 4 4H 2 0. It is largely used for the purpose of making standard electric cells, such for example as the Weston cell.

Cadmium sulphide, CdS, occurs naturally as greenockite (q.v.), and can be artificially prepared by passing sulphuretted hydrogen through acid solutions of soluble cadmium salts, when it is precipitated as a pale yellow amorphous solid. It is used as a pigment (cadmium yellow), for it retains its colour in an atmosphere containing sulphuretted hydrogen; it melts at a white heat, and on cooling solidifies to a lemon-yellow micaceous mass.

Normal cadmium carbonates are unknown, a white precipitate of variable composition being obtained on the addition of solutions of the alkaline carbonates to soluble cadmium salts.

Cadmium nitrate, Cd(N03)2.4H20, is a deliquescent salt, which may be obtained by dissolving either the metal, or its oxide or carbonate in dilute nitric acid. It crystallizes in needles and is soluble in alcohol.

Cadmium salts can be recognized by the brown incrustation which is formed when they are heated on charcoal in the oxidizing flame of the blowpipe; and also by the yellow precipitate formed when sulphuretted hydrogen is passed though their acidified solutions. This precipitate is insoluble in cold dilute acids, in ammonium sulphide, and in solutions of the caustic alkalis," a behaviour which distinguishes it from the yellow sulphides of arsenic and tin. Cadmium is estimated quantitatively by conversion into the oxide, being precipitated from boiling solutions by the addition of sodium carbonate, the carbonate thus formed passing into the oxide on ignition. It can also be determined as sulphide, by precipitation with sulphuretted hydrogen, the precipitated sulphide being dried at Ioo° C. and weighed.

The atomic weight of cadmium was found by 0. W. Huntington (Berichte, 1882, 15, p. 80), from an analysis of the pure bromide, to be 111-9. H. N. Morse and H. C. Jones (Amer. Chem. Journ., 1892, 14, p. 261) by conversion of cadmium into the oxalate and then into oxide, obtained values ranging from 111.981 to 112.05, whilst W. S. Lorimer and E. F. Smith (Zeit. fur anorg. Chem., 1891, I, p. 364), by the electrolytic reduction of cadmium oxide in potassium cyanide solution, obtained as a mean value 112.055. The atomic weight of cadmium has been revised by G. P. Baxter and M. A. Hines (Journ. Amer. Chem. Soc., 1905, 27, p. 222), by determinations of the ratio of cadmium chloride to silver chloride, and of the amount of silver required to precipitate cadmium chloride. The mean value obtained was 112.469 (Ag =107.93). The mean value 112.467 was obtained by Baxter, Hines and Frevert (ibid., 1906, 28, p. 770) by analysing cadmium bromide.


<< Cadiz, Spain (Capital)

Cadmus >>


Wiktionary

Up to date as of January 14, 2010

Definition from Wiktionary, a free dictionary

See also cadmium

German

Chemical Element: Cd (atomical number 48)

Noun

Cadmium n

  1. cadmium

Simple English

[[File:|thumb|right|Cadmium metal]] Cadmium is a metal. It is element 48 on the periodic table. Its symbol is Cd. Its atomic number is 48 and its atomic mass is 112.4. It is found in Group 12 on the periodic table.

Contents

Properties

Physical properties

Cadmium is a blue-gray soft metal. It can be considered a transition metal or a post-transition metal. It is malleable and ductile. It is similar to zinc. It melts at 321°C.

Cadmium has 8 natural isotopes. 5 are radioactive, but 3 have very long half-lives so their radioactivity is almost nothing.

Chemical properties

Cadmium is a moderately reactive metal. It corrodes in moist air and dissolves in acids. It burns in air when powdered to make the brown cadmium oxide.

Chemical compounds

Cadmium forms chemical compounds in two oxidation states: +1 and +2. The +1 state is rare and unstable. The +2 state is much more common. Most +2 compounds dissolve easily in water and are white to yellow. Cadmium oxide can be brown, red, or white. Cadmium sulfide is bright yellow. Cadmium chloride and cadmium sulfate are colorless solids that dissolve easily in water. Cadmium fluoride is slightly soluble.

History

Cadmium was found by two separate people at the same time. They were looking at an impurity in zinc carbonate and found cadmium. For about 100 years, Germany made most cadmium. Cadmium iodide was used as a medicine although it was toxic.

Occurrence

[[File:|thumb|Greenockite (yellow crystal)]] Cadmium ores are rare. Greenockite, a cadmium sulfide mineral is the only main ore and it is found with sphalerite, a zinc sulfide. Because of this, most cadmium comes from zinc processing. Cadmium as a metal is very rare but is found in one place in Russia.

Preparation

China makes the most cadmium. South Korea and Japan also make cadmium. Cadmium is taken from the zinc metal by heating the zinc metal in a vacuum. Cadmium is boiled first. The cadmium is condensed and used. Cadmium is also taken by precipitating it from the solution of zinc sulfate used to make pure zinc by electrolysis.[needs proof]

Uses

In the 1930's and 1940's cadmium was mainly used to plate steel to prevent it from corroding. Then cadmium sulfide was used as a pigment in paint.

Now, cadmium is mainly used in nickel cadmium batteries. 86% of cadmium is used in batteries as of 2009. Some people are trying to stop using nickel-cadmium batteries because of the cadmium. Cadmium is still used to electroplate steel to prevent corrosion. Only about 6% of cadmium is used for this. Cadmium is also used in lasers, nuclear reactors, phosphors, photoresistors, pigments, and semiconductors. Wood's metal, an alloy that melts very easily, has cadmium in it. Cadmium is used in some solder.

Cadmium is not used in the human body or any other animal. A diatom uses cadmium, though.

Safety

Cadmium is a highly toxic metal. Dust of cadmium or its compounds is very dangerous and can kill. Some countries have banned cadmium from electronics. Cigarette smoking is the most important source of cadmium. Smokers have about 4 times more cadmium in their blood than nonsmokers (people who do not smoke). Cadmium is thought to be carcinogenic, although people still debate whether it is other things with the cadmium that cause cancer, like arsenic.


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message