Calcitriol receptor: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

edit
Vitamin D (1,25- dihydroxyvitamin D3) receptor
File:PBB Protein VDR image.jpg
PDB rendering based on 1kb2.
Available structures
1kb2, 1kb4, 1kb6, 1ynw
Identifiers
Symbols VDR; NR1I1
External IDs OMIM601769 MGI103076 HomoloGene37297 GeneCards: VDR Gene
RNA expression pattern
PBB GE VDR 204254 s at tn.png
PBB GE VDR 204253 s at tn.png
PBB GE VDR 204255 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 7421 22337
Ensembl ENSG00000111424 ENSMUSG00000022479
UniProt P11473 Q3U0J7
RefSeq (mRNA) NM_000376 NM_009504
RefSeq (protein) NP_000367 NP_033530
Location (UCSC) Chr 12:
46.52 - 46.59 Mb
Chr 15:
97.68 - 97.74 Mb
PubMed search [1] [2]

The calcitriol receptor, also known as the vitamin D receptor (VDR) and also known as NR1I1 (nuclear receptor subfamily 1, group I, member 1), is a member of the nuclear receptor family of transcription factors.[1] Upon activation by vitamin D, the VDR forms a heterodimer with the retinoid-X receptor and binds to hormone response elements on DNA resulting in expression or transrepression of specific geneproducts. In humans, the vitamin D receptor is encoded by the VDR gene.[2]

Glucocorticoids are known to decrease expression of VDR which is expressed in most tissues of the body and regulate intestinal transport of calcium.

Contents

Function

This gene encodes the nuclear hormone receptor for vitamin D3. This receptor also functions as a receptor for the secondary bile acid lithocholic acid. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows similarity of sequence to the steroid and thyroid hormone receptors. Downstream targets of this nuclear hormone receptor are principally involved in mineral metabolism though the receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer. Mutations in this gene are associated with type II vitamin D-resistant rickets. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding the same protein.[3] The vitamin D receptor plays an important role in regulating the hair cycle. Loss of VDR is associated with hair loss in experimental animals.

Interactions

Calcitriol receptor has been shown to interact with STAT1,[4] Zinc finger and BTB domain-containing protein 16,[5][6] SNW1,[7][8] Nuclear receptor coactivator 2,[9][10][8][11] BAZ1B,[9] MED1,[9][12] MED24,[9][12] RUNX1T1,[6] Nuclear receptor co-repressor 1,[6][13] Nuclear receptor co-repressor 2,[6][13] BAG1,[14] MED12,[9][12] RUNX1[6] and Retinoid X receptor alpha.[7][8]

References

  1. ^ Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA. (2006): "International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor." Pharmacol Rev. 58(4):742-759. PMID 17132852
  2. ^ Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF (September 1991). "The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7". Genomics 11 (1): 168–73. doi:10.1016/0888-7543(91)90114-T. PMID 1662663. http://linkinghub.elsevier.com/retrieve/pii/0888-7543(91)90114-T.  
  3. ^ "Entrez Gene: VDR vitamin D (1,25- dihydroxyvitamin D3) receptor". http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7421.  
  4. ^ Vidal, Marcos; Ramana Chilakamarti V, Dusso Adriana S (Apr. 2002). "Stat1-vitamin D receptor interactions antagonize 1,25-dihydroxyvitamin D transcriptional activity and enhance stat1-mediated transcription". Mol. Cell. Biol. (United States) 22 (8): 2777–87. ISSN 0270-7306. PMID 11909970.  
  5. ^ Ward, J O; McConnell M J, Carlile G W, Pandolfi P P, Licht J D, Freedman L P (Dec. 2001). "The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor". Blood (United States) 98 (12): 3290–300. ISSN 0006-4971. PMID 11719366.  
  6. ^ a b c d e Puccetti, Elena; Obradovic Darja, Beissert Tim, Bianchini Andrea, Washburn Birgit, Chiaradonna Ferdinando, Boehrer Simone, Hoelzer Dieter, Ottmann Oliver Gerhard, Pelicci Pier Giuseppe, Nervi Clara, Ruthardt Martin (Dec. 2002). "AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor". Cancer Res. (United States) 62 (23): 7050–8. ISSN 0008-5472. PMID 12460926.  
  7. ^ a b Baudino, T A; Kraichely D M, Jefcoat S C, Winchester S K, Partridge N C, MacDonald P N (Jun. 1998). "Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription". J. Biol. Chem. (UNITED STATES) 273 (26): 16434–41. ISSN 0021-9258. PMID 9632709.  
  8. ^ a b c Zhang, C; Baudino T A, Dowd D R, Tokumaru H, Wang W, MacDonald P N (Nov. 2001). "Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription". J. Biol. Chem. (United States) 276 (44): 40614–20. doi:10.1074/jbc.M106263200. ISSN 0021-9258. PMID 11514567.  
  9. ^ a b c d e Kitagawa, Hirochika; Fujiki Ryoji, Yoshimura Kimihiro, Mezaki Yoshihiro, Uematsu Yoshikatsu, Matsui Daisuke, Ogawa Satoko, Unno Kiyoe, Okubo Mataichi, Tokita Akifumi, Nakagawa Takeya, Ito Takashi, Ishimi Yukio, Nagasawa Hiromichi, Matsumoto Toshio, Yanagisawa Junn, Kato Shigeaki (Jun. 2003). "The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome". Cell (United States) 113 (7): 905–17. ISSN 0092-8674. PMID 12837248.  
  10. ^ Herdick, M; Steinmeyer A, Carlberg C (Jun. 2000). "Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators". J. Biol. Chem. (UNITED STATES) 275 (22): 16506–12. doi:10.1074/jbc.M910000199. ISSN 0021-9258. PMID 10748178.  
  11. ^ He, Bin; Wilson Elizabeth M (Mar. 2003). "Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs". Mol. Cell. Biol. (United States) 23 (6): 2135–50. ISSN 0270-7306. PMID 12612084.  
  12. ^ a b c Ito, M; Yuan C X, Malik S, Gu W, Fondell J D, Yamamura S, Fu Z Y, Zhang X, Qin J, Roeder R G (Mar. 1999). "Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators". Mol. Cell (UNITED STATES) 3 (3): 361–70. ISSN 1097-2765. PMID 10198638.  
  13. ^ a b Tagami, T; Lutz W H, Kumar R, Jameson J L (Dec. 1998). "The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators". Biochem. Biophys. Res. Commun. (UNITED STATES) 253 (2): 358–63. doi:10.1006/bbrc.1998.9799. ISSN 0006-291X. PMID 9878542.  
  14. ^ Guzey, M; Takayama S, Reed J C (Dec. 2000). "BAG1L enhances trans-activation function of the vitamin D receptor". J. Biol. Chem. (UNITED STATES) 275 (52): 40749–56. doi:10.1074/jbc.M004977200. ISSN 0021-9258. PMID 10967105.  

Further reading

  • Hosoi T (2002). "[Polymorphisms of vitamin D receptor gene]". Nippon Rinsho 60 Suppl 3: 106–10. PMID 11979895.  
  • Uitterlinden AG, Fang Y, Van Meurs JB, et al. (2004). "Genetics and biology of vitamin D receptor polymorphisms.". Gene 338 (2): 143–56. doi:10.1016/j.gene.2004.05.014. PMID 15315818.  
  • Norman AW (2007). "Minireview: vitamin D receptor: new assignments for an already busy receptor.". Endocrinology 147 (12): 5542–8. doi:10.1210/en.2006-0946. PMID 16946007.  
  • Bollag WB (2007). "Differentiation of human keratinocytes requires the vitamin d receptor and its coactivators.". J. Invest. Dermatol. 127 (4): 748–50. doi:10.1038/sj.jid.5700692. PMID 17363957.  
  • Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992). "RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors.". EMBO J. 11 (4): 1409–18. PMID 1314167.  
  • Goto H, Chen KS, Prahl JM, DeLuca HF (1992). "A single receptor identical with that from intestine/T47D cells mediates the action of 1,25-dihydroxyvitamin D-3 in HL-60 cells.". Biochim. Biophys. Acta 1132 (1): 103–8. PMID 1324736.  
  • Saijo T, Ito M, Takeda E, et al. (1991). "A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection.". Am. J. Hum. Genet. 49 (3): 668–73. PMID 1652893.  
  • Szpirer J, Szpirer C, Riviere M, et al. (1992). "The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7.". Genomics 11 (1): 168–73. doi:10.1016/0888-7543(91)90114-T. PMID 1662663.  
  • Yu XP, Mocharla H, Hustmyer FG, Manolagas SC (1991). "Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing.". J. Biol. Chem. 266 (12): 7588–95. PMID 1850412.  
  • Malloy PJ, Hochberg Z, Tiosano D, et al. (1991). "The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families.". J. Clin. Invest. 86 (6): 2071–9. doi:10.1172/JCI114944. PMID 2174914.  
  • Sone T, Marx SJ, Liberman UA, Pike JW (1991). "A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3.". Mol. Endocrinol. 4 (4): 623–31. doi:10.1210/mend-4-4-623. PMID 2177843.  
  • Baker AR, McDonnell DP, Hughes M, et al. (1988). "Cloning and expression of full-length cDNA encoding human vitamin D receptor.". Proc. Natl. Acad. Sci. U.S.A. 85 (10): 3294–8. doi:10.1073/pnas.85.10.3294. PMID 2835767.  
  • Hughes MR, Malloy PJ, Kieback DG, et al. (1989). "Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets.". Science 242 (4886): 1702–5. doi:10.1126/science.2849209. PMID 2849209.  
  • Rut AR, Hewison M, Kristjansson K, et al. (1995). "Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures.". Clin. Endocrinol. (Oxf) 41 (5): 581–90. doi:10.1111/j.1365-2265.1994.tb01822.x. PMID 7828346.  
  • Malloy PJ, Weisman Y, Feldman D (1994). "Hereditary 1 alpha,25-dihydroxyvitamin D-resistant rickets resulting from a mutation in the vitamin D receptor deoxyribonucleic acid-binding domain.". J. Clin. Endocrinol. Metab. 78 (2): 313–6. doi:10.1210/jc.78.2.313. PMID 8106618.  
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.". Gene 138 (1-2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.  
  • Yagi H, Ozono K, Miyake H, et al. (1993). "A new point mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor in a kindred with hereditary 1,25-dihydroxyvitamin D-resistant rickets.". J. Clin. Endocrinol. Metab. 76 (2): 509–12. doi:10.1210/jc.76.2.509. PMID 8381803.  
  • Kristjansson K, Rut AR, Hewison M, et al. (1993). "Two mutations in the hormone binding domain of the vitamin D receptor cause tissue resistance to 1,25 dihydroxyvitamin D3.". J. Clin. Invest. 92 (1): 12–6. doi:10.1172/JCI116539. PMID 8392085.  
  • Jurutka PW, Hsieh JC, Nakajima S, et al. (1996). "Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation.". Proc. Natl. Acad. Sci. U.S.A. 93 (8): 3519–24. doi:10.1073/pnas.93.8.3519. PMID 8622969.  
  • Lin NU, Malloy PJ, Sakati N, et al. (1996). "A novel mutation in the deoxyribonucleic acid-binding domain of the vitamin D receptor causes hereditary 1,25-dihydroxyvitamin D-resistant rickets.". J. Clin. Endocrinol. Metab. 81 (7): 2564–9. doi:10.1210/jc.81.7.2564. PMID 8675579.  

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Advertisements

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message