The Full Wiki

Cellulose: Wikis

  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.










Encyclopedia

From Wikipedia, the free encyclopedia

Cellulose[1]
Identifiers
CAS number 9004-34-6 Yes check.svgY
EC-number 232-674-9
Properties
Molecular formula (C6H10O5)n
Appearance white powder
Density 1.5 g/cm3
Melting point

decomp.

Solubility in water none
Hazards
EU Index not listed
Related compounds
Related compounds Starch
 Yes check.svgY (what is this?)  (verify)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Cellulose is an organic compound with the formula (C6H10O5)n, a polysaccharide consisting of a linear chain of several hundred to over ten thousand β(1→4) linked D-glucose units.[2][3]

Cellulose is the structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most common organic compound on Earth. About 33 percent of all plant matter is cellulose (the cellulose content of cotton is 90 percent and that of wood is 50 percent).[4]

For industrial use, cellulose is mainly obtained from wood pulp and cotton. It is mainly used to produce paperboard and paper; to a smaller extent it is converted into a wide variety of derivative products such as cellophane and rayon. Converting cellulose from energy crops into biofuels such as cellulosic ethanol is under investigation as an alternative fuel source.

Some animals, particularly ruminants and termites, can digest cellulose with the help of symbiotic micro-organisms that live in their guts. Humans can digest cellulose to some extent,[5][6] however it is often referred to as 'dietary fiber' or 'roughage' (e.g. outer shell of Maize) and acts as a hydrophilic bulking agent for feces.

Contents

History

Cellulose was discovered in 1838 by the French chemist Anselme Payen, who isolated it from plant matter and determined its chemical formula.[2][7] Cellulose was used to produce the first successful thermoplastic polymer, celluloid, by Hyatt Manufacturing Company in 1870. Hermann Staudinger determined the polymer structure of cellulose in 1920. The compound was first chemically synthesized (without the use of any biologically-derived enzymes) in 1992, by Kobayashi and Shoda.[8]

Commercial products

Cellulose is the major constituent of paper, paperboard, and card stock and of textiles made from cotton, linen, and other plant fibers.

Cellulose can be converted into cellophane, a thin transparent film, and into rayon, an important fiber that has been used for textiles since the beginning of the 20th century. Both cellophane and rayon are known as "regenerated cellulose fibers"; they are identical to cellulose in chemical structure and are usually made from dissolving pulp via viscose. A more recent and environmentally friendly method to produce rayon is the Lyocell process.

Cellulose is the raw material in the manufacture of nitrocellulose (cellulose nitrate) which was historically used in smokeless gunpowder and as the base material for celluloid used for photographic and movie films until the mid 1930s.

Cellulose is used to make water-soluble adhesives and binders such as methyl cellulose and carboxymethyl cellulose which are used in wallpaper paste. Microcrystalline cellulose (E460i) and powdered cellulose (E460ii) are used as inactive fillers in tablets[9] and as thickeners and stabilizers in processed foods. Cellulose powder is for example used in Kraft Parmesean Cheese to prevent caking inside the tube.

Cellulose is used in the laboratory as the stationary phase for thin layer chromatography. Cellulose fibers are also used in liquid filtration, sometimes in combination with diatomaceous earth or other filtration media, to create a filter bed of inert material. Cellulose is further used to make hydrophilic and highly absorbent sponges.

Cellulose insulation made from recycled paper is becoming popular as an environmentally preferable material for building insulation. It can be treated with boric acid as a fire retardant.

Cellulose source and energy crops

The major combustible component of non-food energy crops is cellulose, with lignin second. Non-food energy crops are more efficient than edible energy crops (which have a large starch component), but still compete with food crops for agricultural land and water resources.[10] Typical non-food energy crops include industrial hemp, switchgrass, Miscanthus, Salix (willow), and Populus (poplar) species.

Some bacteria can convert cellulose into ethanol which can then be used as a fuel; see cellulosic ethanol.

A strand of cellulose (conformation Iα), showing the hydrogen bonds (dashed) within and between cellulose molecules.

Structure and properties

Cellulose has no taste, is odourless, is hydrophilic, is insoluble in water and most organic solvents, is chiral and is biodegradable. It can be broken down chemically into its glucose units by treating it with concentrated acids at high temperature.

Cellulose is derived from D-glucose units, which condense through β(1→4)-glycosidic bonds. This linkage motif contrasts with that for α(1→4)-glycosidic bonds present in starch, glycogen, and other carbohydrates. Cellulose is a straight chain polymer: unlike starch, no coiling or branching occurs, and the molecule adopts an extended and rather stiff rod-like conformation, aided by the equatorial conformation of the glucose residues. The multiple hydroxyl groups on the glucose from one chain form hydrogen bonds with oxygen molecules on the same or on a neighbor chain, holding the chains firmly together side-by-side and forming microfibrils with high tensile strength. This strength is important in cell walls, where the microfibrils are meshed into a carbohydrate matrix, conferring rigidity to plant cells.

a triple strand of cellulose, showing the hydrogen bonds (cyan lines) between glucose strands

Compared to starch, cellulose is also much more crystalline. Whereas starch undergoes a crystalline to amorphous transition when heated beyond 60-70 °C in water (as in cooking), cellulose requires a temperature of 320 °C and pressure of 25 MPa to become amorphous in water.[11]

Several different crystalline structures of cellulose are known, corresponding to the location of hydrogen bonds between and within strands. Natural cellulose is cellulose I, with structures Iα and Iβ. Cellulose produced by bacteria and algae is enriched in Iα while cellulose of higher plants consists mainly of Iβ. Cellulose in regenerated cellulose fibers is cellulose II. The conversion of cellulose I to cellulose II is not reversible, suggesting that cellulose I is metastable and cellulose II is stable. With various chemical treatments it is possible to produce the structures cellulose III and cellulose IV.[12]

Many properties of cellulose depend on its chain length or degree of polymerization, the number of glucose units that make up one polymer molecule. Cellulose from wood pulp has typical chain lengths between 300 and 1700 units; cotton and other plant fibers as well as bacterial celluloses have chain lengths ranging from 800 to 10,000 units.[8] Molecules with very small chain length resulting from the breakdown of cellulose are known as cellodextrins; in contrast to long-chain cellulose, cellodextrins are typically soluble in water and organic solvents.

Plant-derived cellulose is usually contaminated with hemicellulose, lignin, pectin and other substances, while microbial cellulose is quite pure, has a much higher water content, and consists of long chains.

Cellulose is soluble in cupriethylenediamine (CED), cadmiumethylenediamine (Cadoxen), N-methylmorpholine N-oxide and lithium chloride / dimethylformamide[13]. This is used in the production of regenerated celluloses (as viscose and cellophane) from dissolving pulp.

Assaying cellulose

Given a cellulose-containing material, the carbohydrate portion that does not dissolve in a 17.5% solution of sodium hydroxide at 20 °C is α cellulose, which is true cellulose. Acidification of the extract precipitates β cellulose. The portion that dissolves in base but does not precipitate with acid is γ cellulose.

Cellulose can be assayed using a method described by Updegraff in 1969, where the fiber is dissolved in acetic and nitric acid to remove lignin, hemicellulose, and xylosans. The resulting cellulose is allowed to react with anthrone in sulfuric acid. The resulting coloured compound is assayed spectrophotometrically at a wavelength of approximately 635 nm.

In addition, cellulose is represented by the difference between acid detergent fiber (ADF) and acid detergent lignin (ADL).

Biosynthesis

Location and arrangement of cellulose microfibrils in the plant cell wall.

In vascular plants cellulose is synthesized at the plasma membrane by rosette terminal complexes (RTC's). The RTC's are hexameric protein structures, approximately 25 nm in diameter, that contain the cellulose synthase enzymes that synthesise the individual cellulose chains.[14] Each RTC floats in the cell's plasma membrane and "spins" a microfibril into the cell wall.

The RTC's contain at least three different cellulose synthases, encoded by CesA genes, in an unknown stoichiometry.[15] Separate sets of CesA genes are involved in primary and secondary cell wall biosynthesis.

Cellulose synthesis requires chain initiation and elongation, and the two processes are separate. CesA glucosyltransferase initiates cellulose polymerization using a steroid primer, sitosterol-beta-glucoside, and UDP-glucose.[16] Cellulose synthase utilizes UDP-D-glucose precursors to elongate the growing cellulose chain. A cellulase may function to cleave the primer from the mature chain.

Breakdown (cellulolysis)

Cellulolysis is the process of breaking down cellulose into smaller polysaccharides called cellodextrins or completely into glucose units; this is a hydrolysis reaction. Because cellulose molecules bind strongly to each other, cellulolysis is relatively difficult compared to the breakdown of other polysaccharides.[17]

Mammals do not have the ability to break down cellulose directly. Some ruminants like cows and sheep contain certain symbiotic anaerobic bacteria (like Cellulomonas) in the flora of the gut wall, and these bacteria produce enzymes to break down cellulose; the breakdown products are then used by the mammal. Similarly, lower termites contain in their hindguts certain flagellate protozoa which produce such enzymes; higher termites contain bacteria for the job. Fungi, which in nature are responsible for recycling of nutrients, are also able to break down cellulose.

The enzymes utilized to cleave the glycosidic linkage in cellulose are glycoside hydrolases including endo-acting cellulases and exo-acting glucosidases. Such enzymes are usually secreted as part of multienzyme complexes that may include dockerins and cellulose binding modules.[18]

Hemicellulose

Hemicellulose is a polysaccharide related to cellulose that comprises ca. 20% of the biomass of most plants. In contrast to cellulose, hemicellulose is derived from several sugars in addition to glucose, especially xylose but also including mannose, galactose, rhamnose, and arabinose. Hemicellulose consists of shorter chains - around 200 sugar units. Furthermore, hemicellulose is branched, whereas cellulose is unbranched.

Derivatives

The hydroxyl groups of cellulose can be partially or fully reacted with various reagents to afford derivatives with useful properties. Cellulose esters and cellulose ethers are the most important commercial materials. In principle, though not always in current industrial practice, cellulosic polymers are renewable resources.

Among the esters are cellulose acetate and cellulose triacetate, which are film- and fiber-forming materials that find a variety of uses. The inorganic ester nitrocellulose was initially used as an explosive and was an early film forming material.

Ether derivatives include

See also

References

  1. ^ Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri (2002). "Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction". J. Am. Chem. Soc 124 (31): 9074–82. doi:10.1021/ja0257319. PMID 12149011. .
  2. ^ a b Crawford, R. L. (1981). Lignin biodegradation and transformation. New York: John Wiley and Sons. ISBN 0-471-05743-6. 
  3. ^ Updegraff DM (1969). "Semimicro determination of cellulose in biological materials". Analytical Biochemistry 32 (3): 420–424. doi:10.1016/S0003-2697(69)80009-6. PMID 5361396. 
  4. ^ Cellulose. (2008). In Encyclopædia Britannica. Retrieved January 11, 2008, from Encyclopædia Britannica Online.
  5. ^ Slavin, J.L., Brauer, P.M., and Marlett, J.A. (1980) "Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects." J Nutr 111(2):287-297 PMID 6257867
  6. ^ Joshi S, Agte V. (1995) Digestibility of dietary fiber components in vegetarian men. PMID 8719737
  7. ^ Young, Raymond (1986). Cellulose structure modification and hydrolysis. New York: Wiley. ISBN 0471827614. 
  8. ^ a b Klemm, Dieter; Brigitte Heublein, Hans-Peter Fink, Andreas Bohn (2005). "Cellulose: Fascinating Biopolymer and Sustainable Raw Material". ChemInform 36 (36). doi:10.1002/chin.200536238. 
  9. ^ Weiner, Myra L.; Lois A. Kotkoskie (1999). Excipient Toxicity and Safety. New York ; Dekker, c2000.. pp. 210. ISBN 0824782100, 9780824782108. 
  10. ^ Holt-Gimenez, Eric 2007. Biofuels: Myths of the Agrofuels Transition. Backgrounder. Institute for Food and Development Policy, Oakland, CA. 13:2
  11. ^ Cooking cellulose in hot and compressed water Shigeru Deguchi, Kaoru Tsujii and Koki Horikoshi Chem. Commun., 2006, 3293 - 3295, doi:10.1039/b605812d
  12. ^ Structure and morphology of cellulose by Serge Pérez and William Mackie, CERMAV-CNRS, 2001. Chapter IV.
  13. ^ Stenius, Per (2000) "1" Forest Products Chemistry Papermaking Science and Technology 3 Finland: Fapet OY p. 35 ISBN 952-5216-03-9 
  14. ^ Kimura, Laosinchai, Itoh, Cui, Linder, Brown, Plant Cell, 1999, 11, 2075-2085
  15. ^ Taylor, Howells, Huttly, Vickers, Turner, PNAS, 2003, 100, 1450-1455
  16. ^ Peng, Kawagoe, Hogan, Delmer, "Sitosterol-beta-glucoside as primer for cellulose synthesis in plants", Science, 2002, 295, 147-150. PMID 11778054
  17. ^ David G. Barkalow, Roy L. Whistler, "Cellulose", in AccessScience@McGraw-Hill, DOI 10.1036/1097-8542.118200. Retrieved 11 January 2008.
  18. ^ Brás, Natércia; N. M. F. S. A. Cerqueira, P. A. Fernandes, M. J. Ramos (2008). "Carbohydrate Binding Modules from family 11: Understanding the binding mode of polysaccharides". International Journal of Quantum Chemistry 108 (11). doi:10.1002/qua.21755. 

External links


1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

CELLULOSE, the name given to both an individual - cellulose proper, in the restricted sense of a chemical individual - and to a group of substances, the celluloses or cellulose group, which constitute in infinitely varied forms the containing envelope of the plant cell. They are complex carbohydrates, or "saccharocolloids" (Tollens), and are resolved by ultimate hydrolysis into monoses. The typical cellulose is represented by the empirical formula C 6 H 10 0 5, identical with that of starch, with which it has many chemical analogies as well as physiological correlations. The representative "cellulose" is the main constituent of the cotton fibre substance, and is obtainable by treating the raw fibre with boiling dilute alkalis, followed by chlorine gas or bromine water, or simply by alkaline oxidants. The cellulose thus purified is further treated with dilute acids, and then exhaustively with alcohol and ether. Chemical filter-paper (Swedish) is practically pure cellulose, the final purification consisting in exhaustive treatment with hydrofluoric acid to remove silicious inorganic residues. The "cellulose" group, however, comprises a series of substances which, while presenting the characters generally similar to those of cotton cellulose, also exhibit marked divergences. The resemblances are maintained in their synthetical reactions; but reactions involving the decomposition of the complex show many variations. For example, cotton cellulose is difficultly hydrolysed; other celluloses are more or less readily split up by dilute acids, the extreme members readily yielding sugars: the hexosesdextrose, mannose and galactose; and the pentoses - xylose and arabinose; these less resistant cell-wall constituents are termed hemi-celluloses.

The celluloses proper are essentially non-nitrogenous, though originating in the cell protoplasm. The cell-walls of the lower cryptogams, similarly purified, retain a notable proportion - 2.04 o%of constitutional nitrogen. When hydrolysed these fungoid celluloses yield, in addition to monoses, glucosamine and acetic acid. The celluloses of the phanerogams are generally associated, in a degree ranging from physical mixture to chemical union, with other complicated substances, constituting the "compound celluloses." The nature of the associated groups affords a convenient classification into pecto-celluloses, ligno-celluloses and cuto-celluloses. Pectocelluloses are so named because the associated substances - carbohydrates, together with their oxidation products, i.e. containing either two carbonyls (CO) in the unit group or carboxyl (CO.OH) groups in a complex - are readily hydrolysed by weak acids to the gelatinous "pectic acids" or their salts. Ligno-celluloses are the substances of lignified tissue, the non-cellulose constituents of which are characterized by the presence of benzenoid and furfuroid groups; and although essentially complex, they may be regarded as homogeneous, and are conveniently grouped under the name lignone. The lignone complex reacts, by its unsaturated groups, with the halogens. It is a complex containing but little hydroxyl; and is of relatively high carbon percentage (55. o-5 7. o%). Cuto-celluloses predominate in the protective coatings of plant organs, and are characterized by constituent groups, the decomposition products of which are compounds of the fatty series, and also wax alcohols, acids, cholesterols, &c.

The typical pecto-cellulose is the flax fibre, i.e. the bast fibre of the flax plant (Linum usitatissimum), as it occurs in the plant, or as the commercial textile fibre in its raw state. Rhea, or ramie, is another leading textile fibre in which the cellulose occurs associated with alkali-soluble colloidal carbohydrates. Pecto-celluloses are found in the stems of the Gramineae (cereal straws, esparto), and in the fibro-vascular bundles of monocotyledons used as textile and rope-making fibres. They are the chief constituents of the fleshy parenchyma of fruits, tubers, rhizomes. Ligno-celluloses find their chemical representative in the jute fibre. They constitute the woods, and are therefore of the widest distribution and the highest industrial utility. It is important to note that a complex having all the chemical characteristics of a ligno-cellulose occurs in a soluble colloidal form in the juice of the white currant. The formation of lignocellulose is the chemical equivalent of the morphological change of the plant cell known as "lignification." The typical cutocelluloses are the epidermal tissues of all growing plants or organs, which are easily detached from the underlying tissues which it is their function to protect. To subserve this function, they are extremely resistant to the attack of reagents. The associated groups are mostly of the normal saturated series, and of very high molecular weight.

Seeds of Cereals.

Per cent of

Fibre.

Leguminous and

Oil Seeds.

Per cent of

Fibre.

Wheat. .

2.8

Rape

6.4

Barley. .

6.3

Cotton. .

.7.5

Oats .

9.o

Beans. .

][0.0

Maize. .

5.2

Peas.. .

io o

Rye .. .

8 o

Lentils. .

Io o

Rice .

2.5

Vetches. .

7.2

Stems and Foliage

of Root Crops.

Per cent of

Fibre.

Fodder Crops.

Per cent of

Fibre.'

Cereal Straws.

Per cent of

Fibre.

White Turnip .

3.9

Grasses .

32.0

Oats.. .

60.68

Meadow

Hay

25.8

Wheat.. .

75.77

Barley

71.74

Swedish „

4.2

Clover and

Carrot.. .

3.1

Trefoil

23'5

Mangel.. .

2.6

Vetches

25.9

Parsnip.. .

2.6

Lucerne.. .

26.7

Sainfoin.. .

28.7

Stems and

Leguminous.

Oil Seeds.

Foliage of

Fodder

Cereal

Root Crops

Crops.

Straws.

Average °,/ o of water .

14

7

87

70-80

15

Table of contents

Cellulose and Botanical Science

The elaboration of cellulose, i.e. of the cell walls, and its morphological and physiological aspects are discussed in the articles Plants: Physiology, Anatomy: and Cytology; while in the article Coal the part played by cellulose in the formation of these deposits receives treatment: here we may deal with its general relation to agriculture. In the analysis of fodder plants and other vegetable produce, the residue obtained after successive acid and alkaline hydrolysis is the "crude fibre" of the agricultural chemist, and is generally taken as a measure of the actual cellulose contents of the raw material. We give in tabular form the average percentage of crude fibre in typical food-stuffs and agricultural produce: - Seeds Fodder Crops 1 This percentage is calculated on airdry-produce containing 15% of water.

The above figures have a purely empirical value, since they represent a complicated mixture of various residues derived from the celluloses and compound celluloses. This mixture may be further resolved, and by special quantitative methods the proportions of actual cellulose, ligno-cellulose and cuto-celluloses estimated (J. KOnig, Ber., 1906, 39, p. 3564). The figures are taken as an inverse measure of digestibility; at the same time it has been established that this group of relatively indigestible food constituents are more or less digestible and assimilable as flesh and fat producers. The percentage or coefficient of digestibility of the celluloses of the more important food-stuffsgreen fodder, hay, straw and grains - varies from 20 to 75%. It has also been established that their physiological efficiency is, under certain conditions, quite equal to that of starch.

It must also be borne in mind that the indigestible food residues, as finally voided by the animal, have played an important mechanical part as an aid to digestion of those constituents more readily attacked in the digestive tract of animals. They are further an important factor of the agricultural cycle. Returned to the soil as "farm-yard manure," mixed with other cellulosic matter which has served as litter, they add "fibre" to the soil and, as a mechanical diluent of the mineral soil components, maintain this in a more open condition, penetrable by the atmospheric gases, and promoting distribution of moisture. Further by breaking down, with production of "humus," a complex of colloidal "unsaturated" bodies. of acid function, they fulfil important chemical functions by interaction with the mineral soil constituents.

Chemistry of Cellulose

Purified cotton cellulose, which is the definitive prototype of the cellulose group or series, is a complex of monoses or their "residues." It is resolved by solution in sulphuric acid and subsequent hydrolysis of the esters thus produced into dextrose. This fundamental fact with its elementary composition, most simply expressed by the formula C 6 H 10 0 5, has caused it to be regarded as a polyanhydride of dextrose. Forming, as it does, simple esters in the ratio of the reacting hydroxyls 30H: C 6 H 10 0 5, and taking into account its direct converson into o-brom-methyl furfural (Fenton) a constitutional formula has been proposed by A. G. Green (Zeit. Farb. Textil Chem. 3, pp. 97 and 309 (1904)), which is a useful generalization of its reactions, and its ultimate relations to the CH(OH) CH CH(OH) simpler carbohydrates, viz., >0 > 0. Green con CH (OH) CH CH2 siders, moreover, that a group thus formulated may consistently represent the actual dimensions of the reacting unit, but that unit of larger dimensions, if postulated, is easily derived from the above by oxygen linkings.

From another point of view the unit group has been formu / CH (OH) CH(OH) lated as CO > C H 2, the main linking of such units in the `CH (OH) -CH (OH) complex taking place as between their respective CO and CH2 groups in the alternative enolic form CH - C(OH). This view gives expression to the genetic relations of the celluloses to the lignocelluloses, to the tendency to carbon condensation as in the formation of coals, and pseudo-carbons, to the relative resistance of cellulose to hydrolysis, and its other points of differentiation from starch, and more particularly to the ketonic character of its carbonyl (CO) groups, which is also more in harmony with the experimental facts established by Fenton as to the production of methyl furfural.

The probability, however, is that no simple molecular formula adequately represents the constitution of cellulose as it actually exists or indeed reacts. On the other hand, it has been suggested that cellulose is to be regarded as representing a condition of matter analogous to that of a saline electrolyte in solution, i.e. as a complex of molecular aggregates, and of residues (of monose groups) having distinct and opposite polarities; such a complex is essentially labile and its configuration will change progressively under reaction. The exposition of this view is the subject of a publication by. Cross and Bevan (Researches on Cellulose, ii. 1906). The main purpose is to give full effect to the colloidal characteristics of cellulose and its derivatives, with reference to the modern theory of the colloidal state as involving a particular internal equilibrium of amphoteric electrolytes.

The typical cellulose is a white fibrous substance familiar to us in the various forms of bleached cotton. Other fibrous celluloses are equally characteristic as to form and appearance, e.g. bleached flax, hemp, ramie. It is hygroscopic, absorbing 6 to 7% its weight of moisture from the air. When dry, it is an electrical insulator, and has a specific inductive capacity of about 7: when wetted it is a conductor, and manifests electrolytic phenomena.' It is insoluble in water and in the ordinary solvents; it dissolves, however, in a 40-50% solution of zinc chloride, and in ammoniacal solutions of copper oxide (3% CuO, 15% NH 3): from these solutions it is obtained as a highly hydrated, gelatinous precipitate, from the former by dilution or addition of alcohol, from the latter by acidification; these solutions have important industrial application. Projected or drawn into a precipitating solution they may be solidified continuously to threads of various, but controlled dimensions: the regenerated cellulose, now amorphous, in its finer dimensions is known as artificial silk or lustra-cellulose. These forms of cellulose retain the general characters of the original fibrous and "natural" celluloses. In composition they differ somewhat by combination with water (of hydration), which they retain in the air-dry condition. They also further combine with an increased proportion of atmospheric moisture, viz. up to IoI I % of their weight.

Derivatives

Important derivatives are the esters or ethereal salts of both inorganic and organic acids, cellulose behaving as an alcohol, the highest esters indicating that it reacts as a trihydric alcohol of the formula n[C 6 H 7 0 2 (OH) 3 1. The nitrates result by the action of concentrated nitric acid, either alone or in the presence of sulphuric acid: the normal dinitrate represents a definite stage in the series of nitrates, and the ester at this point manifests the important property of solubility in various alcoholic solvents, notably ether-alcohol. Such nitrates are the basis of collodion, of artificial silk by the processes of Chardonnet and Lehner, and of celluloid or xylonite. Higher nitrates are also obtainable up to the limit of the trinitrate, which is insoluble in ether or alcohol, but is soluble in nitroglycerin, nitrobenzene and other solvents. These higher nitrates are the basis of the most important modern explosives.

Cellulose reacts directly with acetic anhydride to form low esters; in the presence of sulphuric acid the reaction proceeds to higher limits; the triacetate is soluble in chloroform. The acid sulphuric ester, C 6 H 8 0 3 (SO 4 H) 2, is obtained by the action of sulphuric acid, but its relation to the original cellulose is doubtful. The monobenzoate and dibenzoate are formed by benzoyl chloride reacting on alkali-cellulose (see below). Cellulose xanthates are obtained from carbon bisulphide and alkalicellulose; these are water soluble derivatives and the basis of "viscose," and of important industries. Mixed esters - acetosulphate, aceto-benzoate, nitrobenzoyl nitrates, aceto-nitrosulphates - have also been investigated.

Cellulose (cotton), when treated with a 15-20% caustic soda solution, gives the compound C6H1005 H20.2NaOH, alkali-cellulose, the original riband-like form with reticulated walls of the cellulose being transformed into a smooth-walled cylinder. The structural changes in the ultimate fibre determine very considerable changes in the dimensions of fabrics so treated. The reactions and structural changes were investigated by J. Mercer, and are known generally as "mercerization." In recent years a very large industry in "mercerized" fabrics (cotton) has resulted from the observation that if the shrinkages of the yarns and fabrics be antagonized by mechanical means, a very high lustre is developed.

Similar, but less definite compounds, are formed with the oxides of lead, manganese, barium, iron, aluminium and chromium. These derivatives, which also find industrial applications in the dyeing and printing of fabrics, differ but little in 1 C. F. Cross and E. J. Bevan, Jour. Chem. Soc., 1 895, 67, p. 449; C. R. Darling, Jour. Faraday Soc. 1904; A. Campbell, Trans. Roy. Soc. 1906.

appearance from the original cellulose, and are without influence on its essential characteristics.

Decompositions

Hydrolysis: - By solution in sulphuric acid followed by dilution and boiling the diluted solution cellulose hydrolyses to fermentable sugars; this reaction is utilized industrially in the manufacture of glucose from rags. Hydrochloric acid produces a friable mass of "hydrocellulose," probably C12H22011, insoluble in water, but readily attacked by alkalis, with the production of soluble derivatives; some dextrose is formed in the original reaction. Hydrobromic acid in ethereal solution gives furfurane derivatives. Cold dilute acids have no perceptible action on cellulose. The actions of such acids are an important auxiliary to bleaching, dyeing and printing processes, but they require careful limitation in respect of concentration and temperature. Cellulose is extremely resistant to the action of dilute alkalis: a 1-2% solution of sodium hydrate having little action at temperatures up to i 50; hence the use of caustic soda, soda ash and sodium silicate in bleaching processes, i.e. for the elimination of the non-cellulose components of the raw fibres. Oxidation in acid solutions gives compounds classed as "oxycelluloses," insoluble in water, but more or less soluble in alkalis; continued oxidation gives formic, acetic and carbonic acids. Oxidation in alkaline solution is more easily controlled and limited; solutions of bleaching powder, or more generally of alkaline hydrochlorites, receive industrial application in oxidizing the coloured impurities of the fibre, or residues left after more or less severe alkali treatments, leaving the cellulose practically unaffected. This, however, is obviously a question of conditions: this group of oxidants also oxidize to oxycellulose, and under more severe conditions to acid products, e.g. oxalic and carbonic acids. Certain bacteria also induce decompositions which are resolutions into ultimate products of the lowest molecular dimensions, as hydrogen, carbon dioxide, methane, acetic acid and butyric acid (Omeliansky) (Handb. Techn. Mykologie [F. Lafar] pp. 245-268), but generally the cellulose complex is extremely resistant to the organic ferments. Cellulose burns with a luminous flame to carbon dioxide and water; dry distillation gives a complicated mixture of gaseous and liquid products and a residue of charcoal or pseudo-carbon. Chromic acid in sulphuric acid solutions effects a complete oxidation, i.e. combustion to water and carbonic acid.

Ligno-celluloses

These compounds have many of the characteristics of the cellulose esters; they are in effect ethereal compounds of cellulose and the quinonoid lignone complex, and the combination resists hydrolysis by weak alkalis or acids. The cellulose varies in amount from So to 50%, and the lignone varies inversely as the degree of lignification, that is, from the lignified bast fibre of annuals, of which jute is a type, to the dense tissues of the perennial dicotyledonous woods, typified by the beech. The empirical formula of the lignone complex varies from C19H2209 (jute) to C26 H 30010 (pine wood). In certain reactions the non-cellulose or lignone constituents are selectively converted into soluble derivatives, and may be separated as such from the cellulose which is left; for example, chlorination gives products soluble in sodium sulphite solution, by the combination of unsaturated groups of the lignone with the halogen, while digestion with bisulphite solutions at elevated temperatures (140-160) gives soluble sulphonated derivatives. This last reaction is employed industrially in the preparation of cellulose for paper-making from coniferous woods. These reactions are "quantitative" since they depend upon well-defined constitutional features of the lignone complex, and the resolution of the ligno-cellulose takes place with no further change in the lignone than the synthetical combination with the substituting groups. The constituent groups of the lignone specifically HC reacting are of benzenoid type of the probable form HC 21 CO' H ' C/ CO deduced from the similarity of the chlorinated derivatives to mairogallol, the product of the action of chlorine on pyrogallol in acetic acid solution (A. Hantzsch, Ber. 20, p. 2033).

The complex contains methoxy (OCH 3) groups. There is also present a residue which is readily broken down by oxidizing agents, and indeed by simple hydrolysis, to acetic acid. Another important group of actual constituents are pentosanes - partially isolated as "wood gum" by solution in alkalis - and furfural derivatives (hydroxy furfurals) derived from these. The actual constitutional relationships of these main groups, as well as the localization of the methoxy groups, are still problematical.

Certain colour reactions are characteristic, though they are in some cases reactions of certain constituents invariably present in the natural forms of the ligno-cellulose; which may be removed without affecting the essential character of the lignone complex. Aniline salts generally give a yellow coloration, dimethyl-para-phenylenediamine gives a deep red coloration, phloroglucin in hydrochloric acid gives a crimson coloration. Reactions more definitely characteristic of the lignone are: - ferric ferrocyanide, which is taken up and transformed into Prussian blue throughout the fibre, without affecting its structure, although there may be as much as a 50% gain in weight; iodine in potassium iodide solution gives a deep brown colour due to absorption of the halogen, a reaction which admits of quantitative application, i.e. as a measure of the proportion of ligno-cellulose in a fibrous mixture; nitric acid gives a deep orange yellow coloration; digested with the dilute acid (5-I o% HN03) at 50 the ligno-celluloses are entirely resolved, the lignone complex being attacked and dissolved in the form of nitroso-ketonic acids, which, on continued heating, are finally resolved to oxalic, acetic, formic and carbonic acids.

Derivatives of Ligno-cellulose

By reaction with chlorine jute yields the derivative C 19 H 18 C1 4 O 9, soluble in alcohol, and in acetic acid; this derivative has the reactions of a quinone chloride. By reaction with sodium sulphite it is converted into a hydroquinone sulphonate of deep purple colour. The reaction of the ligno-celluloses (pine wood) with the bisulphites yields the soluble derivatives of the general formula C26H2909 S03H (containing two O CH 3 groups). Jute reacts with nitric acid in presence of sulphuric acid to form nitrates; and with acetic anhydride to form low acetates. It reacts with alkaline hydrates with structural changes similar to those obtained with cotton; and by the further action of benzoyl chloride and of carbon bisulphide upon the resulting compounds there result the corresponding benzoates and xanthates respectively. But these synthetical derivatives are mixtures of cellulose and lignone derivatives, and so far of merely theoretical, interest.

Decompositions of Ligno-cellulose

In addition to the specific resolutions above described which depend upon the distinctive chemical characters of the cellulose and lignone respectively, the following may be noted: to simple hydrolytic agents the two groups are equally resistant, therefore by boiling with dilute acids or alkalis the groups are attacked pari passu. Weak oxidants may also be used as bleaching agents to remove coloured by-products without seriously attacking the ligno-cellulose, which is obtained in its bleached form. Nitric acid of all strengths effects complete resolution. Chromic acid in dilute solutions combines with the lignone complex, but in presence of hydrolysing acids total oxidation of the lignone is determined. The principal products are oxalic, carbonic, formic and acetic acids. This reaction is an index of constitution. Generally, the lignone is attacked under many conditions and by many reagents which are without action upon cellulose, by virtue of its unsaturated constitution, and its acid and aldehydic residues.

Cuto-cellulose

A typical cuto-cellulose is the cuticle (peel) of the apple which, when purified by repeated hydrolytic treatment and finally by alcohol and ether, gives a product of the composition C = 75.66%, H = '1.37%, 0 =1 4.97%. Hydrolysis by strong alkalis gives stearo-cutic acid, CsH4804, and oleo-cutic acid, C 14 H 20 0 4 (Fremy). Cork is a complex mixture containing various compound celluloses: extraction with alcohol removes certain fatty alcohols and acids, and aromatic derivatives related to tannic acid; the residue is probably a mixture of cellulose, ligno-cellulose, cerin, C20H320 and suberin; the latter yields stearic acid, C18H3602, and the acid C22H4203. The cutocelluloses have been only superficially investigated, and, with the exception of cork, are of but little direct industrial importance.

Industrial Uses of Cellulose

The applications of cellulose to the necessities of human life, infinitely varied in kind as they are colossal in magnitude, depend upon two groups of qualities or properties, (1) structural, (2) chemical. The manufactures of vegetable textiles and of paper are based upon the fibrous forms of the naturally occurring celluloses, together with such structural qualities as are expressed in the terms strength, elasticity, specific gravity. As regards chemical properties, those which come into play are chiefly the negative quality of resistance to chemical change; this is obviously a primary factor of value in enabling fabrics to withstand wear and tear, contact with atmospheric oxygen and water, and such chemical treatments as laundrying; positive chemical properties are brought into play in the auxiliary processes of dyeing, printing, and the treatment and preparation in connexion with these. Staple textiles of this group are cotton, flax, hemp and jute; other fibres are used in rope-making and brush-making industries. These subjects are treated in special articles under their own headings and in the article Fibres. The course of industrial development in the 19th century has been one of enormous expansion in use and considerable refinement in methods of preparation and manufacture. Efforts to introduce new forms of cellulose have had little result. Rhea or ramie has been a favourite subject of investigation; the industry has been introduced into England, and doubtless its development is only a question of time, as on the continent of Europe the production of rhea yarns is well established, though it is still only a relatively small trade - probably two or three tons a day total production. The paper trade has required to seek new sources of cellulose, in consequence of the enormous expansion of the uses of paper. Important phases of development were: (1) in the period of 1860 to 1870, the introduction of esparto, which has risen to a consumption of 250,000 tons a year in the United Kingdom, at which figure it remains fairly steady; (2) the decade 1870 to 1880, which saw the development of the manufacture of cellulose from coniferous woods, and this industry now furnishes a staple of world-wide consumption, though the industry is necessarily localized in countries where the coniferous woods are available in large quantities. As a development of the paper industry we must mention the manufacture of paper textiles, based upon the production of pulp yarns. Paper pulps are worked into flat strips, which are then rolled into cylindrical form, and by a final twisting process a yarn is produced sufficiently strong to be employed in weaving.

What we may call the special cellulose industries depend upon specific chemical properties of cellulose, partly intrinsic, partly belonging to the derivatives such as the esters. Thus the cellulose nitrates are the bases of our modern high explosives, as well as those now used for military purposes. Their use has been steadily developed and perfected since the middle of the 19th century. The industries in celluloid, xylonite, &c., also depend upon the nitric esters of cellulose, and the plastic state which they assume when treated with solvent liquids, such as alcohol, amyl acetate, camphor and other auxiliaries, in which state they can be readily moulded and fashioned at will. They have taken an important place as structural materials both in useful and artistic applications. The acetates of cellulose have recently been perfected, and are used in coating fine wires for electrical purposes. especially in instrument-making; this use depends upon their electrical properties of high insulation and low inductive capacity. Hydrated forms of cellulose, which result from treatment with various reagents, are the bases of the following industries: vegetable parchment results from the action of sulphuric acid upon cellulose (cotton) in the form of paper, followed by that of water, which precipitates the partially colloidalized cellulose. This industry is carried out on "continuous" machinery, the cellulose, in the form of paper, being treated in rolls. Vulcanized fibre is produced by similar processes, as for instance by treating paper with zinc chloride solvents and cementing together a number of sheets when in the colloidal hydrated state; the goods are exhaustively washed to remove last traces of soluble electrolytes; this is necessary, as the product is used for electrical insulation. The solvent action of cupro-ammonium is used in treating cellulose goods, cotton and paper, the action being allowed to proceed sufficiently to attack the constituent fibres and convert them into colloidal cupro-ammonium compounds, which are then dried, producing a characteristic green-coloured finish of colloidal cellulose and rendering the goods impervious to water. The important industry of mercerization has been mentioned above; this is carried out on both yarns and cloth of cotton goods chiefly composed of Egyptian cottons. A high lustrous finish is produced, giving the goods very much the appearance of silk.

Of special importance are the more recent developments in the production of artificial fibres of all dimensions, by spinning or drawing the solutions of cellulose or derivatives. Three such processes are in course of evolution. (1) The first is based on the nitrates of cellulose which are dissolved in ether-alcohol, and spun through fine glass jets into air or water, the unit threads being afterwards twisted together to constitute the thread used for weaving (process of Chardonnet and Lehner). These processes were developed in the period 1883 to 1897, at which later date they had assumed serious industrial proportions. (2) The cupro-ammonium solution of cellulose is similarly employed, the solution being spun or drawn into a strong acid bath which instantly regenerates cellulose hydrate in continuous length. (3) Still more recently the "viscose" solution of cellulose, i.e. of the cellulose xanthogenic acid, has been perfected for the production of artificial silk or lustra-cellulose; the alkaline solution of the cellulose derivative being drawn either into concentrated ammonium salt solutions or into acid baths. This product, known as artificial silk, prepared by the three competing processes, was in 1908 an established textile with a total production in Europe of about 5000 tons a year, a quantity which bids fair to be very largely increased by the advent of the viscose process, which will effect a very considerable lowering in the cost of production. The viscose solution of cellulose is also used for a number of industrial effects in connexion with paper-sizing, paper-coating, textile finishes, and the production of book cloth and leather cloth, and, solidified in solid masses, is used in preparing structural solids which can be moulded, turned and fashioned.

For the special literature of cellulose treated from the general point of view of this article, the reader may consult the following works by C. F. Cross and E. J. Bevan: Cellulose (1895, 2nd ed. 1903), Researches on Cellulose, i. (1901), Researches on Cellulose, ii. (1906). (C. F. C.)


<< Benvenuto Cellini

Anders Celsius >>


Wiktionary

Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

See also cellulose

German

Wikipedia-logo.png
German Wikipedia has an article on:
Cellulose

Wikipedia de

Noun

Cellulose

  1. Alternative spelling of Zellulose (chiefly in technical texts)

Simple English

Cellulose is the main chemical that forms the main structure of plants.

Cellulose is made from a form of glucose and makes up most of the cell wall of plant cells. This is what keeps a plant in shape. Cellulose is not digestible by humans.








Got something to say? Make a comment.
Your name
Your email address
Message