The Full Wiki

Chaparral: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Chaparral is a shrubland or heathland plant community found primarily in the U.S. state of California and in the northern portion of the Baja California peninsula, Mexico. It is shaped by a Mediterranean climate (mild, wet winters and hot dry summers) and wildfire. Similar plant communities are found in the four other Mediterranean climate regions around the world, including the Mediterranean Basin (where it is known as maquis), central Chile (where it is called matorral), South African Cape Region (known there as fynbos), and in Western and Southern Australia.

The word chaparral is a loan word from Spanish. The Spanish word comes from the word chaparro, which means both small and dwarf evergreen oak, which itself comes from the Basque word txapar, with the same meaning.

Chaparral, Santa Ynez Mountains, near Santa Barbara, California

A typical chaparral plant community consists of densely-growing evergreen scrub oaks and other drought-resistant shrubs. It often grows so densely that it is all but impenetrable to large animals and humans. This, and its generally arid condition, makes it notoriously prone to wildfires. Although many chaparral plant species require some fire cue (heat, smoke, or charred wood) for germination, chaparral plants are not "adapted" to fire per se. Rather, these species are adapted to particular fire regimes involving season, frequency, intensity and severity of the burn.


Plant species

In Central and Southern California chaparral forms a dominant habitat. Members of the chaparral biota native to California, all of which tend to regrow quickly after fires, include:

Bird species

The complex ecology of chaparral habitats supports a very large number of animal species. Here is a short list of birds which are an integral part of the chaparral systems. These first few are essential to the health of the system.

These are very common inhabitants

Ecology of fire in chaparral

Because of the hot, dry conditions that exist in the summer and fall, chaparral is one of the most fire-prone plant communities in North America. Some fires are caused by lightning, but these are usually during periods of high humidity and low winds and are easily controlled. Nearly all of the very large wildfires are human caused during periods of very hot, dry easterly Santa Ana winds. These human caused fires are generally due to power lines, arson, sparking machinery, or campfires.

There are two assumptions relating to California chaparral fire regimes that appear to have caused considerable confusion and controversy within the fields of wildfire and land management: first, older stands of chaparral become “senescent” or “decadent” implying they need fire to remain healthy (Hanes 1971), and second, wildfire suppression policies have allowed chaparral to accumulate unnatural levels of fuel leading to larger fires (Minnich 1983).

The perspective that older chaparral is unhealthy or unproductive may have originated during the 1940s when studies were conducted measuring the amount of forage available to deer populations in chaparral stands. However, according to recent studies, California chaparral is extraordinarily resilient to very long periods without fire (Keeley, Pfaff, and Safford 2005) and continues to maintain productive growth throughout pre-fire conditions (Hubbard 1986, Larigauderie et al. 1990). Seeds of many chaparral plants actually require 30 years or more worth of accumulated leaf litter before they will successfully germinate (e.g. scrub oak: Quercus berberidifolia, toyon: Heteromeles arbutifolia, holly-leafed cherry: Prunus ilicifolia). When intervals between fires drop below 10 to 15 years, many chaparral species are eliminated and the system is typically replaced by non-native, weedy grassland (Haidinger and Keeley 1993, Keeley 1995, Zedler 1995).

The idea that older chaparral is responsible for causing large fires was originally proposed in the 1980s by comparing wildfires in Baja California and southern California. It was suggested that fire suppression activities in southern California allowed more fuel to accumulate which in turn led to larger fires (in Baja, fires often burn without active suppression efforts). This is similar to the argument that fire suppression in western United States has allowed Ponderosa Pine forests to become “overstocked.” In the past, surface-fires burned through these forests at intervals of anywhere between 4 and 36 years, clearing out the understory and creating a more ecologically balanced system. However, chaparral has a crown-fire regime, meaning fires consume the entire system whenever they burn. Detailed analysis of historical fire data has shown that fire suppression activities have failed to exclude fire from southern California chaparral as they have in Ponderosa Pine forests (Keeley et al. 1999). In addition, the number of fires is increasing in step with population growth. Overall, chaparral stand age does not have a significant correlation to its tendency to burn (Moritz et al. 2004). Low humidity, low fuel moisture, and high winds appear to be the primary factors in determining when a chaparral stand burns.

The Chaparral is a coastal biome with hot dry summers and mild, rainy winters. The Chaparral area gets about 38–100 cm (15–39 in) of precipitation a year. This makes the chaparral most vulnerable to fire in the late summer and fall.

See also


  • Haidinger, T.L., and J.E. Keeley. 1993. Role of high fire frequency in destruction of mixed chaparral. Madrono 40: 141–147.
  • Halsey, R.W. 2008. Fire, Chaparral, and Survival in Southern California. Second Edition. Sunbelt Publications, San Diego, CA. 232 p.
  • Hanes, T. L. 1971. Succession after fire in the chaparral of southern California. Ecol. Monographs 41: 27–52.
  • Hubbard, R.F. 1986. Stand age and growth dynamics in chamise chaparral. Master’s thesis, San Diego State University, San Diego, California.
  • Keeley, J. E., C. J. Fotheringham, and M. Morais. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829–1832.
  • Keeley, J.E. 1995. Future of California floristics and systematics: wildfire threats to the California flora. Madrono 42: 175–179.
  • Keeley, J.E., A.H. Pfaff, and H.D. Stafford. 2005. Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands. International Journal of Wildland Fire 14: 255–265.
  • Larigauderie, A., T.W. Hubbard, and J. Kummerow. 1990. Growth dynamics of two chaparral shrub species with time after fire. Madrono 37: 225–236.
  • Minnich, R. A. 1983. Fire mosaics in southern California and northern Baja California. Science 219:1287–1294.
  • Moritz, M.A., J.E. Keeley, E.A. Johnson, and A.A. Schaffner. 2004. Testing a basic assumption of shrubland fire management: How important is fuel age? Frontiers in Ecology and the Environment 2:67–72.
  • Zedler, P.H. 1995. Fire frequency in southern California shrublands: biological effects and management options, pp. 101–112 in J.E. Keeley and T. Scott (eds.), Brushfires in California wildlands: ecology and resource management. International Association of Wildland Fire, Fairfield, Wash.
  • Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 0-13-250882-6. 

External links



Got something to say? Make a comment.
Your name
Your email address