The Full Wiki

More info on Circuit minimization

Circuit minimization: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

In Boolean algebra, circuit minimization is the problem of obtaining the smallest logic circuit (Boolean formula) that represents a given Boolean function or truth table. The general circuit minimization problem is believed to be intractable,[1] but there are effective heuristics such as Karnaugh maps and the Quine–McCluskey algorithm that facilitate the process.



The problem with having a complicated circuit (i.e. one with many elements, such as logical gates) is that each element takes up physical space in its implementation and costs time and money to produce in itself.


While there are many ways to minimize a circuit, this is an example that minimizes (or simplifies) a boolean function. Note that the boolean function carried out by the circuit is directly related to the algebraic expression from which the function is implemented.[2] Consider the circuit used to represent (A \wedge \bar{B}) \vee (\bar{A} \wedge B). It is evident that two negations, two conjunctions, and a disjunction are used in this statement. This means that to build the circuit one would need two inverters, two AND gates, and an OR gate.

We can simplify (minimize) the circuit by applying logical identities or using intuition. Since the example states that A is true when B is false or the other way around, we can conclude that this simply means A \neq B. In terms of logical gates, inequality simply means an XOR gate (exclusive or). Therefore, (A \wedge \bar{B}) \vee (\bar{A} \wedge B) \iff A \neq B. Then the two circuits shown below are equivalent:


You can additionally check the correctness of the result using a truth table.

See also


  1. ^ Kabanets, Valentine; Cai, Jin-Yi (2000), "Circuit minimization problem", Proc. 32nd Symposium on Theory of Computing, Portland, Oregon, USA, pp. 73–79, doi:10.1145/335305.335314, ECCC TR99-045  .
  2. ^ M. Mano, C. Kime. "Logic and Computer Design Fundamentals" (Fourth Edition). Pg 54


  • Mano, M. Morris; Kime, Charles R. (2008), Logic and Computer Design Fundamentals; Fourth Edition, Pearson Education Inc., pp. 54  


Got something to say? Make a comment.
Your name
Your email address