Color: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...

More interesting facts on Color

Include this on your site/blog:


From Wikipedia, the free encyclopedia

Color is an important part of human expression.

Color or colour (see spelling differences) is the visual perceptual property corresponding in humans to the categories called red, yellow, blue and others. Color derives from the spectrum of light (distribution of light energy versus wavelength) interacting in the eye with the spectral sensitivities of the light receptors. Color categories and physical specifications of color are also associated with objects, materials, light sources, etc., based on their physical properties such as light absorption, reflection, or emission spectra. By defining a color space, colors can be identified numerically by their coordinates.

Because perception of color stems from the varying sensitivity of different types of cone cells in the retina to different parts of the spectrum, colors may be defined and quantified by the degree to which they stimulate these cells. These physical or physiological quantifications of color, however, do not fully explain the psychophysical perception of color appearance.

The science of color is sometimes called chromatics. It includes the perception of color by the human eye and brain, the origin of color in materials, color theory in art, and the physics of electromagnetic radiation in the visible range (that is, what we commonly refer to simply as light).


Physics of color

Continuous optical spectrum (designed for monitors with gamma 1.5).
The colors of the visible light spectrum[1]
color wavelength interval frequency interval
red ~ 700–635 nm ~ 430–480 THz
orange ~ 635–590 nm ~ 480–510 THz
yellow ~ 590–560 nm ~ 510–540 THz
green ~ 560–490 nm ~ 540–610 THz
blue ~ 490–450 nm ~ 610–670 THz
violet ~ 450–400 nm ~ 670–750 THz
Color, wavelength, frequency and energy of light
Color \lambda \,\!/nm \nu \,\!/1014 Hz \nu_b \,\!/104 cm−1 E \,\!/eV E \,\!/kJ mol−1
Infrared >1000 <3.00 <1.00 <1.24 <120
Red 700 4.28 1.43 1.77 171
Orange 620 4.84 1.61 2.00 193
Yellow 580 5.17 1.72 2.14 206
Green 530 5.66 1.89 2.34 226
Blue 470 6.38 2.13 2.64 254
Violet 420 7.14 2.38 2.95 285
Near ultraviolet 300 10.0 3.33 4.15 400
Far ultraviolet <200 >15.0 >5.00 >6.20 >598

Electromagnetic radiation is characterized by its wavelength (or frequency) and its intensity. When the wavelength is within the visible spectrum (the range of wavelengths humans can perceive, approximately from 380 nm to 740 nm), it is known as "visible light".

Most light sources emit light at many different wavelengths; a source's spectrum is a distribution giving its intensity at each wavelength. Although the spectrum of light arriving at the eye from a given direction determines the color sensation in that direction, there are many more possible spectral combinations than color sensations. In fact, one may formally define a color as a class of spectra that give rise to the same color sensation, although such classes would vary widely among different species, and to a lesser extent among individuals within the same species. In each such class the members are called metamers of the color in question.

Spectral colors

The familiar colors of the rainbow in the spectrum – named using the Latin word for appearance or apparition by Isaac Newton in 1671 – include all those colors that can be produced by visible light of a single wavelength only, the pure spectral or monochromatic colors. The table at right shows approximate frequencies (in terahertz) and wavelengths (in nanometers) for various pure spectral colors. The wavelengths are measured in vacuum (see refraction).

The color table should not be interpreted as a definitive list – the pure spectral colors form a continuous spectrum, and how it is divided into distinct colors linguistically is a matter of culture and historical contingency (although people everywhere have been shown to perceive colors in the same way[2]). A common list identifies six main bands: red, orange, yellow, green, blue, and violet. Newton's conception included a seventh color, indigo, between blue and violet – but most people do not distinguish it, and most color scientists do not recognize it as a separate color; it is sometimes designated as wavelengths of 420–440 nm.

The intensity of a spectral color may alter its perception considerably; for example, a low-intensity orange-yellow is brown, and a low-intensity yellow-green is olive-green.

For discussion of non-spectral colors, see below.

Color of objects

The upper disk and the lower disk have exactly the same objective color, and are in identical gray surrounds; based on context differences, humans perceive the squares as having different reflectances, and may interpret the colors as different color categories; see same color illusion.

The color of an object depends on both the physics of the object in its environment and the characteristics of the perceiving eye and brain. Physically, objects can be said to have the color of the light leaving their surfaces, which normally depends on the spectrum of the incident illumination and the reflectance properties of the surface, as well as potentially on the angles of illumination and viewing. Some objects not only reflect light, but also transmit light or emit light themselves (see below), which contribute to the color also. And a viewer's perception of the object's color depends not only on the spectrum of the light leaving its surface, but also on a host of contextual cues, so that the color tends to be perceived as relatively constant: that is, relatively independent of the lighting spectrum, viewing angle, etc. This effect is known as color constancy.

Some generalizations of the physics can be drawn, neglecting perceptual effects for now:

  • Light arriving at an opaque surface is either reflected "specularly" (that is, in the manner of a mirror), scattered (that is, reflected with diffuse scattering), or absorbed – or some combination of these.
  • Opaque objects that do not reflect specularly (which tend to have rough surfaces) have their color determined by which wavelengths of light they scatter more and which they scatter less (with the light that is not scattered being absorbed). If objects scatter all wavelengths, they appear white. If they absorb all wavelengths, they appear black.
  • Opaque objects that specularly reflect light of different wavelengths with different efficiencies look like mirrors tinted with colors determined by those differences. An object that reflects some fraction of impinging light and absorbs the rest may look black but also be faintly reflective; examples are black objects coated with layers of enamel or lacquer.
  • Objects that transmit light are either translucent (scattering the transmitted light) or transparent (not scattering the transmitted light). If they also absorb (or reflect) light of varying wavelengths differentially, they appear tinted with a color determined by the nature of that absorption (or that reflectance).
  • Objects may emit light that they generate themselves, rather than merely reflecting or transmitting light. They may do so because of their elevated temperature (they are then said to be incandescent), as a result of certain chemical reactions (a phenomenon called chemoluminescence), or for other reasons (see the articles Phosphorescence and List of light sources).
  • Objects may absorb light and then as a consequence emit light that has different properties. They are then called fluorescent (if light is emitted only while light is absorbed) or phosphorescent (if light is emitted even after light ceases to be absorbed; this term is also sometimes loosely applied to light emitted because of chemical reactions).

For further treatment of the color of objects, see structural color, below.

To summarize, the color of an object is a complex result of its surface properties, its transmission properties, and its emission properties, all of which factors contribute to the mix of wavelengths in the light leaving the surface of the object. The perceived color is then further conditioned by the nature of the ambient illumination, and by the color properties of other objects nearby, via the effect known as color constancy and via other characteristics of the perceiving eye and brain.

Color perception

Normalized typical human cone cell responses (S, M, and L types) to monochromatic spectral stimuli

Development of theories of color vision

Main article: Color theory

Although Aristotle and other ancient scientists had already written on the nature of light and color vision, it was not until Newton that light was identified as the source of the color sensation. In 1810, Goethe published his comprehensive Theory of Colors. In 1801 Thomas Young proposed his trichromatic theory, based on the observation that any color could be matched with a combination of three lights. This theory was later refined by James Clerk Maxwell and Hermann von Helmholtz. As Helmholtz puts it, "the principles of Newton's law of mixture were experimentally confirmed by Maxwell in 1856. Young's theory of color sensations, like so much else that this marvellous investigator achieved in advance of his time, remained unnoticed until Maxwell directed attention to it."[3]

At the same time as Helmholtz, Ewald Hering developed the opponent process theory of color, noting that color blindness and afterimages typically come in opponent pairs (red-green, blue-yellow, and black-white). Ultimately these two theories were synthesized in 1957 by Hurvich and Jameson, who showed that retinal processing corresponds to the trichromatic theory, while processing at the level of the lateral geniculate nucleus corresponds to the opponent theory.[4]

In 1931, an international group of experts known as the Commission internationale de l'éclairage (CIE) developed a mathematical color model, which mapped out the space of observable colors and assigned a set of three numbers to each.

Color in the eye

This image (when viewed in full size, 1000 pixels wide) contains 1 million pixels, each of a different color. The human eye can distinguish about 10 million different colors[5]

The ability of the human eye to distinguish colors is based upon the varying sensitivity of different cells in the retina to light of different wavelengths. The retina contains three types of color receptor cells, or cones. One type, relatively distinct from the other two, is most responsive to light that we perceive as violet, with wavelengths around 420 nm. (Cones of this type are sometimes called short-wavelength cones, S cones, or, misleadingly, blue cones.) The other two types are closely related genetically and chemically. One of them (sometimes called long-wavelength cones, L cones, or, misleadingly, red cones) is most sensitive to light we perceive as yellowish-green, with wavelengths around 564 nm; the other type (sometimes called middle-wavelength cones, M cones, or, misleadingly, green cones) is most sensitive to light perceived as green, with wavelengths around 534 nm.

Light, no matter how complex its composition of wavelengths, is reduced to three color components by the eye. For each location in the visual field, the three types of cones yield three signals based on the extent to which each is stimulated. These values are sometimes called tristimulus values.

The response curve as a function of wavelength for each type of cone is illustrated above. Because the curves overlap, some tristimulus values do not occur for any incoming light combination. For example, it is not possible to stimulate only the mid-wavelength (so-called "green") cones; the other cones will inevitably be stimulated to some degree at the same time. The set of all possible tristimulus values determines the human color space. It has been estimated that humans can distinguish roughly 10 million different colors.[5]

The other type of light-sensitive cell in the eye, the rod, has a different response curve. In normal situations, when light is bright enough to strongly stimulate the cones, rods play virtually no role in vision at all.[6] On the other hand, in dim light, the cones are understimulated leaving only the signal from the rods, resulting in a colorless response. (Furthermore, the rods are barely sensitive to light in the "red" range.) In certain conditions of intermediate illumination, the rod response and a weak cone response can together result in color discriminations not accounted for by cone responses alone.

Color in the brain

The visual dorsal stream (green) and ventral stream (purple) are shown. The ventral stream is responsible for color perception.

While the mechanisms of color vision at the level of the retina are well-described in terms of tristimulus values (see above), color processing after that point is organized differently. A dominant theory of color vision proposes that color information is transmitted out of the eye by three opponent processes, or opponent channels, each constructed from the raw output of the cones: a red-green channel, a blue-yellow channel and a black-white "luminance" channel. This theory has been supported by neurobiology, and accounts for the structure of our subjective color experience. Specifically, it explains why we cannot perceive a "reddish green" or "yellowish blue," and it predicts the color wheel: it is the collection of colors for which at least one of the two color channels measures a value at one of its extremes.

The exact nature of color perception beyond the processing already described, and indeed the status of color as a feature of the perceived world or rather as a feature of our perception of the world, is a matter of complex and continuing philosophical dispute (see qualia).

Nonstandard color perception

Color deficiency

If one or more types of a person's color-sensing cones are missing or less responsive than normal to incoming light, that person can distinguish fewer colors and is said to be color deficient or color blind (though this latter term can be misleading; almost all color deficient individuals can distinguish at least some colors). Some kinds of color deficiency are caused by anomalies in the number or nature of cones in the retina. Others (like central or cortical achromatopsia) are caused by neural anomalies in those parts of the brain where visual processing takes place.


While most humans are trichromatic (having three types of color receptors), many animals, known as tetrachromats, have four types. These include some species of spiders, most marsupials, birds, reptiles, and many species of fish. Other species are sensitive to only two axes of color or do not perceive color at all; these are called dichromats and monochromats respectively. A distinction is made between retinal tetrachromacy (having four pigments in cone cells in the retina, compared to three in trichromats) and functional tetrachromacy (having the ability to make enhanced color discriminations based on that retinal difference). As many as half of all women are retinal tetrachromats.[7] The phenomenon arises when an individual receives two slightly different copies of the gene for either the medium- or long-wavelength cones, which are carried on the x-chromosome. To have two different genes, a person must have two x-chromosomes, which is why the phenomenon only occurs in women.[7] For some of these retinal tetrachromats, color discriminations are enhanced, making them functional tetrachromats.[7]


In certain forms of synesthesia, perceiving letters and numbers (grapheme–color synesthesia) or hearing musical sounds (music–color synesthesia) will lead to the unusual additional experiences of seeing colors. Behavioral and functional neuroimaging experiments have demonstrated that these color experiences lead to changes in behavioral tasks and lead to increased activation of brain regions involved in color perception, thus demonstrating their reality, and similarity to real color percepts, albeit evoked through a non-standard route.


After exposure to strong light in their sensitivity range, photoreceptors of a given type become desensitized. For a few seconds after the light ceases, they will continue to signal less strongly than they otherwise would. Colors observed during that period will appear to lack the color component detected by the desensitized photoreceptors. This effect is responsible for the phenomenon of afterimages, in which the eye may continue to see a bright figure after looking away from it, but in a complementary color.

Afterimage effects have also been utilized by artists, including Vincent van Gogh.

Color constancy

There is an interesting phenomenon which occurs when an artist uses a limited color palette: the eye tends to compensate by seeing any grey or neutral color as the color which is missing from the color wheel. E.g., in a limited palette consisting of red, yellow, black and white, a mixture of yellow and black will appear as a variety of green, a mixture of red and black will appear as a variety of purple, and pure grey will appear bluish.[citation needed]

The trichromatic theory discussed above is strictly true only if the whole scene seen by the eye is of one and the same color which, of course, is unrealistic. In reality, the brain compares the various colors in a scene to eliminate the effects of the illumination. If a scene is illuminated with one light, and then with another, as long as the difference between the light sources stays within a reasonable range, the colors in the scene appear constant to us. This was studied by Edwin Land in the 1970s and led to his retinex theory of color constancy.

Color naming

Colors vary in several different ways, including hue (red vs. orange vs. blue), saturation, brightness, and gloss. Some color words are derived from the name of an object of that color, such as "orange" or "salmon", while others are abstract, like "red".

Different cultures have different terms for colors, and may also assign some color names to slightly different parts of the spectrum: for instance, the Chinese character 青 (rendered as qīng in Mandarin and ao in Japanese) has a meaning that covers both blue and green; blue and green are traditionally considered shades of "青." South Korea, on the other hand, differentiates between blue and green by using "綠 (녹)" for green and "靑 (청)" for blue.

In the 1969 study Basic Color Terms: Their Universality and Evolution, Brent Berlin and Paul Kay describe a pattern in naming "basic" colors (like "red" but not "red-orange" or "dark red" or "blood red", which are "shades" of red). All languages that have two "basic" color names distinguish dark/cool colors from bright/warm colors. The next colors to be distinguished are usually red and then yellow or green. All languages with six "basic" colors include black, white, red, green, blue and yellow. The pattern holds up to a set of twelve: black, grey, white, pink, red, orange, yellow, green, blue, purple, brown, and azure (distinct from blue in Russian and Italian but not English).


Individual colors have a variety of cultural associations such as national colors (in general described in individual color articles and color symbolism). The field of color psychology attempts to identify the effects of color on human emotion and activity. Chromotherapy is a form of alternative medicine attributed to various Eastern traditions.

Spectral colors and color reproduction

The CIE 1931 color space chromaticity diagram. The outer curved boundary is the spectral (or monochromatic) locus, with wavelengths shown in nanometers. Note that the colors depicted depend on the color space of the device on which you are viewing the image, and therefore may not be a strictly accurate representation of the color at a particular position, and especially not for monochromatic colors.

Most light sources are mixtures of various wavelengths of light. However, many such sources can still have a spectral color insofar as the eye cannot distinguish them from monochromatic sources. For example, most computer displays reproduce the spectral color orange as a combination of red and green light; it appears orange because the red and green are mixed in the right proportions to allow the eye's red and green cones to respond the way they do to orange.

A useful concept in understanding the perceived color of a non-monochromatic light source is the dominant wavelength, which identifies the single wavelength of light that produces a sensation most similar to the light source. Dominant wavelength is roughly akin to hue.

There are many color perceptions that by definition cannot be pure spectral colors due to desaturation or because they are purples (mixtures of red and violet light, from opposite ends of the spectrum). Some examples of necessarily non-spectral colors are the achromatic colors (black, gray and white) and colors such as pink, tan, and magenta.

Two different light spectra that have the same effect on the three color receptors in the human eye will be perceived as the same color. This is exemplified by the white light emitted by fluorescent lamps, which typically has a spectrum of a few narrow bands, while daylight has a continuous spectrum. The human eye cannot tell the difference between such light spectra just by looking into the light source, although reflected colors from objects can look different. (This is often exploited e.g., to make fruit or tomatoes look more intensely red.)

Similarly, most human color perceptions can be generated by a mixture of three colors called primaries. This is used to reproduce color scenes in photography, printing, television and other media. There are a number of methods or color spaces for specifying a color in terms of three particular primary colors. Each method has its advantages and disadvantages depending on the particular application.

No mixture of colors, though, can produce a fully pure color perceived as completely identical to a spectral color, although one can get very close for the longer wavelengths, where the chromaticity diagram above has a nearly straight edge. For example, mixing green light (530 nm) and blue light (460 nm) produces cyan light that is slightly desaturated, because response of the red color receptor would be greater to the green and blue light in the mixture than it would be to a pure cyan light at 485 nm that has the same intensity as the mixture of blue and green.

Because of this, and because the primaries in color printing systems generally are not pure themselves, the colors reproduced are never perfectly saturated colors, and so spectral colors cannot be matched exactly. However, natural scenes rarely contain fully saturated colors, thus such scenes can usually be approximated well by these systems. The range of colors that can be reproduced with a given color reproduction system is called the gamut. The CIE chromaticity diagram can be used to describe the gamut.

Another problem with color reproduction systems is connected with the acquisition devices, like cameras or scanners. The characteristics of the color sensors in the devices are often very far from the characteristics of the receptors in the human eye. In effect, acquisition of colors that have some special, often very "jagged," spectra caused for example by unusual lighting of the photographed scene can be relatively poor.

Species that have color receptors different from humans, e.g. birds that may have four receptors, can differentiate some colors that look the same to a human. In such cases, a color reproduction system 'tuned' to a human with normal color vision may give very inaccurate results for the other observers.

The different color response of different devices can be problematic if not properly managed. For color information stored and transferred in digital form, color management techniques, such as those based on ICC profiles, can help to avoid distortions of the reproduced colors. Color management does not circumvent the gamut limitations of particular output devices, but can assist in finding good mapping of input colors into the gamut that can be reproduced.

Pigments and reflective media

Pigments are chemicals that selectively absorb and reflect different spectra of light. When a surface is painted with a pigment, light hitting the surface is reflected, minus some wavelengths. This subtraction of wavelengths produces the appearance of different colors. Most paints are a blend of several chemical pigments, intended to produce a reflection of a given color.

Pigment manufacturers assume the source light will be white, or of roughly equal intensity across the spectrum. If the light is not a pure white source (as in the case of nearly all forms of artificial lighting), the resulting spectrum will appear a slightly different color. Red paint, viewed under blue light, may appear black. Red paint is red because it reflects only the red components of the spectrum. Blue light, containing none of these, will create no reflection from red paint, creating the appearance of black.

Structural color

Structural colors are colors caused by interference effects rather than by pigments. Color effects are produced when a material is scored with fine parallel lines, formed of a thin layer or of two or more parallel thin layers, or otherwise composed of microstructures on the scale of the color's wavelength. If the microstructures are spaced randomly, light of shorter wavelengths will be scattered preferentially to produce Tyndall effect colors: the blue of the sky, the luster of opals, and the blue of human irises. If the microstructures are aligned in arrays, for example the array of pits in a CD, they behave as a diffraction grating: the grating reflects different wavelengths in different directions due to interference phenomena, separating mixed "white" light into light of different wavelengths. If the structure is one or more thin layers then it will reflect some wavelengths and transmit others, depending on the layers' thickness.

Structural color is studied in the field of thin-film optics. A layman's term that describes particularly the most ordered or the most changeable structural colors is iridescence. Structural color is responsible for the blues and greens of the feathers of many birds (the blue jay, for example), as well as certain butterfly wings and beetle shells. Variations in the pattern's spacing often give rise to an iridescent effect, as seen in peacock feathers, soap bubbles, films of oil, and mother of pearl, because the reflected color depends upon the viewing angle. Numerous scientists have carried out research in butterfly wings and beetle shells, including Isaac Newton and Robert Hooke. Since 1942, electron micrography has been used, advancing the development of products that exploit structural color, such as "photonic" cosmetics.[8]

Additional terms

An example of natural colorfulness: A sunset in Flushing, Queens lights up the sky over Citi Field
  • Colorfulness, chroma, purity, or saturation: how "intense" or "concentrated" a color is.
  • Hue: the color's direction from white, for example in a color wheel or chromaticity diagram.
  • Shade: a color made darker by adding black.
  • Tint: a color made lighter by adding white.
  • Value, brightness, or lightness: how light or dark a color is.
  • Dichromatism: a phenomenon where the hue is dependent on concentration and/or thickness of the absorbing substance.

See also


  1. ^ Craig F. Bohren (2006). Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems. Wiley-VCH. ISBN 3527405038.,M1. 
  2. ^ Berlin, B. and Kay, P., Basic Color Terms: Their Universality and Evolution, Berkeley: University of California Press, 1969.
  3. ^ Hermann von Helmholtz, Physiological Optics – The Sensations of Vision, 1866, as translated in Sources of Color Science, David L. MacAdam, ed., Cambridge: MIT Press, 1970.
  4. ^ Palmer, S.E. (1999). Vision Science: Photons to Phenomenology, Cambridge, MA: MIT Press. ISBN 0-262-16183-4.
  5. ^ a b Judd, Deane B.; Wyszecki, Günter (1975). Color in Business, Science and Industry. Wiley Series in Pure and Applied Optics (third edition ed.). New York: Wiley-Interscience. p. 388. ISBN 0471452122. 
  6. ^ "Under well-lit viewing conditions (photopic vision), cones  ...are highly active and rods are inactive." Hirakawa, K.; Parks, T.W. (2005). "Chromatic Adaptation and White-Balance Problem". IEEE ICIP. doi:10.1109/ICIP.2005.1530559. 
  7. ^ a b c Jameson, K. A., Highnote, S. M., & Wasserman, L. M. (2001). "Richer color experience in observers with multiple photopigment opsin genes." (PDF). Psychonomic Bulletin and Review 8 (2): 244–261. doi:10.1038/351652a0. 
  8. ^ "Economic and Social Research Council - Science in the Dock, Art in the Stocks". Retrieved 2007-10-07. 

External links and sources

Study guide

Up to date as of January 14, 2010

From Wikiversity

Crystal Clear app kaddressbook.png
Please help develop this page

This page was created, but so far, little content has been added. Everyone is invited to help expand and create educational content for Wikiversity. If you need help learning how to add content, see the editing tutorial and the MediaWiki syntax reference. Please do not simply copy-and-paste large chunks from other projects.

1911 encyclopedia

Up to date as of January 14, 2010
(Redirected to Colour article)

From LoveToKnow 1911

COLOUR (Lat. color, connected with celare, to hide, the root meaning, therefore, being that of a covering). The visual apparatus of the eye enables us to distinguish not only differences of form, size and brilliancy in the objects looked upon, but also differences in the character of the light received from them. These latter differences, familiar to us as differences in colour, have their physical origin in the variations in wave-length (or frequency) which may exist in light which is capable of exciting the sensation of vision. From the physical point of view, light of a pure colour, or homogeneous light, means light whose undulations are mathematically of a simple character and which cannot be resolved by a prism into component parts. All the visible pure colours, as thus defined, are to be found in the spectrum, and there is an infinite number of them, corresponding to all the possible variations of wave-length within the limits of the visible spectrum (see Spectroscopy). On this view, there is a strict analogy between variations of colour in light and variations of pitch in sound, but the visible spectrum contains a range of frequency extending over about one octave only, whereas the range of audibility embraces about eleven octaves.

Of all the known colours it might naturally be thought that white is the simplest and purest, and, till Sir Isaac Newton's time, this was the prevailing opinion. Newton, however, showed that white light could be decomposed by a prism into the spectral colours red, orange, yellow, green, blue, indigo and violet; the colours appearing in this order and passing gradually into each other without abrupt transitions. White is therefore not a simple colour, but is merely the colour of sunlight, and probably owes its apparently homogeneous character to the fact that it is the average colour of the light which fills the eye when at rest. The colours of the various objects which we see around us are not due (with the exception of self-luminous and fluorescent bodies) to any power possessed by these objects of creating the colours which they exhibit, but merely to the exercise of a selective action on the light of the sun, some of the constituent rays of the white light with which they are illuminated being absorbed, while the rest are reflected or scattered in all directions, or, in the case of transparent bodies, transmitted. White light is thus the basis of all other colours, which are derived from it by the suppression of some one or more of its parts. A red flower, for instance, absorbs the blue and green rays and most of the yellow, while the red rays and usually some yellow are scattered. If a red poppy is illuminated successively by red, yellow, green and blue light it will appear a brilliant red in the red light, yellow in the yellow light, but less brilliant if the red colour is pure; and black in the other colours, the blackness being due to the almost complete absorption of the corresponding colour.

Bodies may be classified as regards colour according to the nature of the action they exert on white light. In the case of ordinary opaque bodies a certain proportion of the incident light is irregularly reflected or scattered from their surfaces. A white object is one which reflects nearly all the light of all colours; a black object absorbs nearly all. A body which reflects only a portion of the light, but which exhibits no predominance in any particular hue, is called grey. A white surface looks grey beside a similar surface more brilliantly illuminated.

The next class is that of most transparent bodies, which owe their colour to the light which is transmitted, either directly through, or reflected back again at the farther surface. A body which transmits all the visible rays equally well is said to be colourless; pure water, for example, is nearly quite colourless, though in large masses it appears bluish-green. A translucent substance is one which partially transmits light. Translucency is due to the light being scattered by minute embedded particles or minute irregularities of structure. Some fibrous specimens of tremolite and gypsum are translucent in the direction of the fibres, and practically opaque in a transverse direction. Coloured transparent objects vary in shade and hue according to their size; thus, a conical glass filled with a red liquid commonly appears yellow at the bottom, varying through orange up to red at the upper part. A coloured powder is usually of a much lighter tint than the substance in bulk, as the light is reflected back after transmission through only a few thin layers. For the same reason the powders of transparent substances are opaque.

Polished bodies, whether opaque or transparent, when illuminated with white light and viewed at the proper angle, reflect the incident light regularly and appear white, without showing much of their distinctive colours.

Some bodies reflect light of one colour and transmit that of another; such bodies nearly always possess the properties of selective or metallic reflection and anomalous dispersion. Most of the coal-tar dyes belong to this category. Solid eosin, for example, reflects a yellowish-green and transmits a red light. Gold appears yellow under ordinary circumstances, but if the light is reflected many times from the surface it appears a ruby colour. On the other hand, a powerful beam of light transmitted through a thin gold-leaf appears green.

Some solutions exhibit the curious phenomenon of dichromatism (from Se-, double, and X pWµa, colour), that is, they appear of one colour when viewed in strata of moderate thickness, but of a different colour in greater thicknesses (see Absorption Of Light).

The blue colour of the sky has been explained by Lord Rayleigh as due to the scattering of light by small suspended particles and air molecules, which is most effective in the case of the shorter waves (blue). J. Tyndall produced similar effects in the laboratory. The green colour of sea-water near the shore is also due to a scattering of light.

The colours of bodies which are gradually heated to white incandescence occur in the order - red, orange, yellow, white. This is because the longer waves of red light are first emitted, then the yellow as well, so that orange results, then so much green that the total effect is yellow, and lastly all the colours, compounding to produce white. Fluorescent bodies have the power of converting light of one colour into that of another (see Fluorescence).

Besides the foregoing kinds of colorization, a body may exhibit, under certain circumstances, a colouring due to some special physical conditions rather than to the specific properties of the material; such as the colour of a white object when illuminated by light of some particular colour; the colours seen in a film of oil on water or in mother-of-pearl, or soapbubbles, due to interference (q.v.); the colours seen through the eyelashes or through a thin handkerchief held up to the light, due to diffraction (q.v.); and the colours caused by ordinary refraction, as in the rainbow, double refraction and polarization (qq.v.).

Composition of Colours

It has been already pointed out that white light is a combination of all the colours in the spectrum. This was shown by Newton, who recombined the spectral colours and produced white. Newton also remarks that if a froth be made on the surface of water thickened a little with soap, and examined closely, it will be seen to be coloured with all the colours of the spectrum, but at a little distance it looks white owing to the combined effect on the eye of all the colours.

The question of the composition of colours is largely a physiological one, since it is possible, by mixing colours, say red and yellow, to produce a new colour, orange, which appears identical with the pure orange of the spectrum, but is physically quite different, since it can be resolved by a prism into red and yellow again. There is no doubt that the sensation of colour-vision is threefold, in the sense that any colour can be produced by the combination, in proper proportions, of three standard colours. The question then arises, what are the three primary colours? Sir David Brewster considered that they were red, yellow and blue; and this view has been commonly held by painters and others, since all the known brilliant hues can be derived from the admixture of red, yellow and blue pigments. For instance, vermilion and chrome yellow will give an orange, chrome yellow and ultramarine a green, and vermilion and ultramarine a purple mixture. But if we superpose the pure spectral colours on a screen, the resulting colours are quite different. This is especially the case with yellow and blue, which on the screen combine to produce white, generally with a pink tint, but cannot be made to give green. The reason of this difference in the two results is that in the former case we do not get a true combination of the colours at all. When the mixed pigments are illuminated by white light, the yellow particles absorb the red and blue rays, but reflect the yellow along with a good deal of the neighbouring green and orange. The blue particles, on the other hand, absorb the red, orange and yellow, but reflect the blue and a good deal of green and violet. As much of the light is affected by several particles, most of the rays are absorbed except green, which is reflected by both pigments. Thus, the colour of the mixture is not a mixture of the colours yellow and blue, but the remainder of white light after the yellow and blue pigments have absorbed all they can. The effect can also be seen in coloured solutions. If two equal beams of white light are transmitted respectively through a yellow solution of potassium bichromate and a blue solution of copper sulphate in proper thicknesses, they can be compounded on a screen to an approximately white colour; but a single beam transmitted through both solutions appears green. Blue and yellow pigments would produce the effect of white only if very sparsely distributed. This fact is made use of in laundries, where cobalt blue is used to correct the yellow colour of linen after washing.

Thomas Young suggested red, green and violet as the primary colours, but the subsequent experiments of J. Clerk Maxwell appear to show that they should be red, green and blue. Sir William Abney, however, assigns somewhat different places in the spectrum to the primary colours, and, like Young, considers that they should be red, green and violet. All other hues can be obtained by combining the three primaries in proper proportions. Yellow is derived from red and green. This can be done by superposition on a screen or by making a solution which will transmit only red and green rays. For this purpose Lord Rayleigh recommends a mixture of solutions of blue litmus and yellow potassium chromate. The litmus stops the yellow and orange light, while the potassium chromate stops the blue and violet. Thus only red and green are transmitted, and the result is a full compound yellow which resembles the simple yellow of the spectrum in appearance, but is resolved into red and green by a prism. The brightest yellow pigments are those which give both the pure and compound yellow. Since red and green produce yellow, and yellow and blue produce white, it follows that red, green and blue can be compounded into white. H. von Helmholtz has shown that the only pair of simple spectral colours capable of compounding to white are a greenish-yellow and blue.

Just as musical sounds differ in pitch, loudness and quality, so may colours differ in three respects, which Maxwell calls hue, shade and tint. All hues can be produced by combining every pair of primaries in every proportion. The addition of white alters the tint without affecting the hue. If the colour be darkened by adding black or by diminishing the illumination, a variation in shade is produced. Thus the hue red includes every variation in tint from red to white, and every variation in shade from red to black, and similarly for other hues. We can represent every hue and tint on a diagram in a manner proposed by Young, following a very similar suggestion B of Newton's. Let RGB (fig. 1) be an FIG. I. equilateral triangle, and let the angular points be coloured red, green and blue of such intensities as to produce white if equally combined; and let the colour of every point of the triangle be determined by combining such proportions of the three primaries, that three weights in the same proportion would have their centre of gravity at the point. Then the centre of the triangle will be a neutral tint, white or grey; and the middle points of the sides Y, S, P will be yellow, greenish-blue and purple. The hue varies all round the perimeter. The tint varies along any straight line through W. To vary the shade, the whole triangle must be uniformly darkened.

The simplest way of compounding colours is by means of Maxwell's colour top, which is a broad spinning-top over the spindle of which coloured disks can be slipped (fig. 2). The disks are slit radially so that they can be slipped partially over each other and the surfaces exposed in any desired ratio. Three disks are used together, and a match is obtained between these and a pair of smaller ones mounted on the same spindle. If any five colours are taken, two of which may be black and white, a match can be got between them by suitable adjustment. This shows that a relation exists between any four colours (the black being only needed to obtain the proper intensity) and that consequently the number of independent colours is three. A still better instrument for combining colours is Maxwell's colour box, in which the colours of the spectrum are combined by means of prisms. Sir W. Abney has also invented an apparatus for the same purpose, which is much the same in principle as Maxwell's colour box. Several methods of colour photography depend on the fact that all varieties of colour can be compounded from red, green and blue in proper proportions.

Any two colours which together give white are called complementary colours. Greenish-yellow and blue are a pair of complementaries, as already men tioned. Any number of pairs may be obtained by a simple device due to Helmholtz and represented in fig. 3. A beam of white light, decomposed by the prism P, is recompounded into white light by the lens 1 and focussed on a screen at f. If the thin prism p is inserted near the lens, any set of colours may be deflected to another point n, thus producing two coloured and complementary images of the source of light.

Nature of White Light

The question as to whether white light actually consists of trains of waves of regular frequency has been discussed in recent years by A. Schuster, Lord Rayleigh and others, and it has been shown that even if it consisted of a succession of somewhat irregular impulses, it would still be resolved, by the dispersive property of a prism or grating, into trains of regular frequency. We may still, however, speak of white light as compounded of the rays of the spectrum, provided we mean only that the two systems are mathematically equivalent, and not that the homogeneous trains exist as such in the original light.

See also Newton's Opticks, bk. i. pt. ii.; Maxwell's Scientific Papers; Helmholtz's papers in Poggendorf's Annalen; Sir G. G. Stokes, Burnett Lectures for 1884-5-6; Abney's Colour Vision (1895). (J. R. C.)

<< Colossus

Military Colours >>

Simple English

[[File:|thumb|Results of adding different colors of light]] [[File:|thumb|Results of subtracting different colors of light]] Color or colour[1] is a property of light as seen by people. This word is written as color in American English and colour in British English. Each colour has a different wavelength.

The most common colour names are:

"Primary colours" can be mixed to make the other colours. Red, yellow and blue are the three traditional primary colours. The primary colours for television screens and computer monitors are red, green and blue. Printers use magenta, yellow and cyan as their primary colours; they also use black.

People who can not see colours or have a distorted sense of colour are called colour blind. Most colour blind people are male.

Colours are sometimes added to food. Food colouring is used to colour food, but some foods have natural colourings, like beta carotene.

When something has no colour, it is colourless. An example is air.

A transparent material is not the same as a colourless material because it can still have a colour, like stained glass.

Other pages

Simple English Wiktionary has the word meaning for:


  1. See WP:MOS#National varieties of English.


Got something to say? Make a comment.
Your name
Your email address