The Full Wiki

More info on Continuum mechanics/Balance of angular momentum

Continuum mechanics/Balance of angular momentum: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Study guide

Up to date as of January 14, 2010

From Wikiversity

Statement of the balance of angular momentum

The balance of angular momentum in an inertial frame can be expressed as:

 \boldsymbol{\sigma}= \boldsymbol{\sigma}^T 

Proof

We assume that there are no surface couples on \partial{\Omega} or body couples in Ω. Recall the general balance equation

 \cfrac{d}{dt}\left[\int_{\Omega} f(\mathbf{x},t)~\text{dV}\right] = \int_{\partial{\Omega}} f(\mathbf{x},t)[u_n(\mathbf{x},t) - \mathbf{v}(\mathbf{x},t)\cdot\mathbf{n}(\mathbf{x},t)]~\text{dA} + \int_{\partial{\Omega}} g(\mathbf{x},t)~\text{dA} + \int_{\Omega} h(\mathbf{x},t)~\text{dV} ~.

In this case, the physical quantity to be conserved the angular momentum density, i.e., f = \mathbf{x}\times(\rho~\mathbf{v}). The angular momentum source at the surface is then g = \mathbf{x}\times\mathbf{t} and the angular momentum source inside the body is h = \mathbf{x}\times(\rho~\mathbf{b}). The angular momentum and moments are calculated with respect to a fixed origin. Hence we have

 \cfrac{d}{dt}\left[\int_{\Omega} \mathbf{x}\times(\rho~\mathbf{v})~\text{dV}\right] = \int_{\partial{\Omega}} [\mathbf{x}\times(\rho~\mathbf{v})] [u_n - \mathbf{v}\cdot\mathbf{n}]~\text{dA} + \int_{\partial{\Omega}} \mathbf{x}\times\mathbf{t}~\text{dA} + \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Assuming that Ω is a control volume, we have

 \int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = - \int_{\partial{\Omega}} [\mathbf{x}\times(\rho~\mathbf{v})][\mathbf{v}\cdot\mathbf{n}]~\text{dA} + \int_{\partial{\Omega}} \mathbf{x}\times\mathbf{t}~\text{dA} + \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Using the definition of a tensor product we can write

 [\mathbf{x}\times(\rho~\mathbf{v})][\mathbf{v}\cdot\mathbf{n}] = [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]\cdot\mathbf{n} ~.

Also, \mathbf{t} = \boldsymbol{\sigma}\cdot\mathbf{n}. Therefore we have

 \int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = - \int_{\partial{\Omega}} [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]\cdot\mathbf{n} ~\text{dA} + \int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA} + \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Using the divergence theorem, we get

 \int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = - \int_{\Omega} \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]~\text{dV} + \int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA} + \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

To convert the surface integral in the above equation into a volume integral, it is convenient to use index notation. Thus,

 \left[\int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA}\right]_i = \int_{\partial{\Omega}} e_{ijk}~x_j~\sigma_{kl}~n_l~\text{dA}= \int_{\partial{\Omega}} A_{il}~n_l~\text{dA}= \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA}

where [~]_i represents the i-th component of the vector. Using the divergence theorem

 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA} = \int_{\Omega} \boldsymbol{\nabla} \bullet \boldsymbol{A}~\text{dV} = \int_{\Omega} \frac{\partial A_{il}}{\partial x_l}~\text{dV} = \int_{\Omega} \frac{\partial }{\partial x_l}(e_{ijk}~x_j~\sigma_{kl})~\text{dV}~.

Differentiating,

 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA} = \int_{\Omega} \left[ e_{ijk}~\delta_{jl}~\sigma_{kl} + e_{ijk}~x_j~\frac{\partial \sigma_{kl}}{\partial x_l}\right]~\text{dV} = \int_{\Omega} \left[ e_{ijk}~\sigma_{kj} + e_{ijk}~x_j~\frac{\partial \sigma_{kl}}{\partial x_l}\right]~\text{dV} = \int_{\Omega} \left[ e_{ijk}~\sigma_{kj} + e_{ijk}~x_j~[\boldsymbol{\nabla} \bullet \boldsymbol{\sigma}]_l\right]~\text{dV} ~.

Expressed in direct tensor notation,

 \int_{\partial{\Omega}} \boldsymbol{A}\cdot\mathbf{n}~\text{dA} = \int_{\Omega} \left[ [\mathcal{E}:\boldsymbol{\sigma}^T]_i + [\mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})]_i\right]~\text{dV}

where \mathcal{E} is the third-order permutation tensor. Therefore,

 \left[\int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA}\right]_i = = \int_{\Omega} \left[ [\mathcal{E}:\boldsymbol{\sigma}^T]_i + [\mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})]_i\right]~\text{dV}

or,

 \int_{\partial{\Omega}} \mathbf{x}\times(\boldsymbol{\sigma}\cdot\mathbf{n})~\text{dA} = = \int_{\Omega} \left[ \mathcal{E}:\boldsymbol{\sigma}^T + \mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})\right]~\text{dV} ~.

The balance of angular momentum can then be written as

 \int_{\Omega} \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right]~\text{dV} = - \int_{\Omega} \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}]~\text{dV} + \int_{\Omega} \left[ \mathcal{E}:\boldsymbol{\sigma}^T + \mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma})\right]~\text{dV} + \int_{\Omega} \mathbf{x}\times(\rho~\mathbf{b})~\text{dV} ~.

Since Ω is an arbitrary volume, we have

 \mathbf{x}\times\left[\cfrac{\partial}{\partial t}(\rho~\mathbf{v})\right] = - \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}] + \mathcal{E}:\boldsymbol{\sigma}^T + \mathbf{x}\times(\boldsymbol{\nabla} \bullet \boldsymbol{\sigma}) + \mathbf{x}\times(\rho~\mathbf{b})

or,

 {\mathbf{x}}\times {\left[\frac{\partial }{\partial t}(\rho~\mathbf{v}) - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = - \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}] + \mathcal{E}:\boldsymbol{\sigma}^T ~.

Using the identity,

 \boldsymbol{\nabla} \bullet (\mathbf{u}\otimes\mathbf{v}) = (\boldsymbol{\nabla} \bullet \mathbf{v})\mathbf{u} + (\boldsymbol{\nabla}\mathbf{u})\cdot\mathbf{v}

we get

 \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}] = (\boldsymbol{\nabla} \bullet \mathbf{v})[\mathbf{x}\times(\rho~\mathbf{v})] + (\boldsymbol{\nabla} [\mathbf{x}\times(\rho~\mathbf{v})])\cdot\mathbf{v} ~.

The second term on the right can be further simplified using index notation as follows.

 \begin{align} \left[(\boldsymbol{\nabla} [\mathbf{x}\times(\rho~\mathbf{v})])\cdot\mathbf{v}\right]_i = \left[(\boldsymbol{\nabla} [\rho~(\mathbf{x}\times\mathbf{v})])\cdot\mathbf{v}\right]_i & = \frac{\partial }{\partial x_l}(\rho~e_{ijk}~x_j~v_k)~v_l \ & = e_{ijk}\left[ \frac{\partial \rho}{\partial x_l}~x_j~v_k~v_l+ \rho~\frac{\partial x_j}{\partial x_l}~v_k~v_l + \rho~x_j~\frac{\partial v_k}{\partial x_l}~v_l\right] \ & = (e_{ijk}~x_j~v_k)~\left(\frac{\partial \rho}{\partial x_l}~v_l\right)+ \rho~(e_{ijk}~\delta_{jl}~v_k~v_l) + e_{ijk}~x_j~\left(\rho~\frac{\partial v_k}{\partial x_l}~v_l\right) \ & = [(\mathbf{x}\times\mathbf{v})(\boldsymbol{\nabla} \rho\cdot\mathbf{v}) + \rho~\mathbf{v}\times\mathbf{v} + \mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v})]_i \ & = [(\mathbf{x}\times\mathbf{v})(\boldsymbol{\nabla} \rho\cdot\mathbf{v}) + \mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v})]_i ~. \end{align}

Therefore we can write

 \boldsymbol{\nabla} \bullet [[\mathbf{x}\times(\rho~\mathbf{v})]\otimes\mathbf{v}] = (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) + (\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) + \mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v})] ~.

The balance of angular momentum then takes the form

 {\mathbf{x}}\times {\left[\frac{\partial }{\partial t}(\rho~\mathbf{v}) - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = - (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - (\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) - \mathbf{x}\times(\rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v}) + \mathcal{E}:\boldsymbol{\sigma}^T

or,

 {\mathbf{x}}\times {\left[\frac{\partial }{\partial t}(\rho~\mathbf{v}) + \rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = - (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - (\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) + \mathcal{E}:\boldsymbol{\sigma}^T

or,

 {\mathbf{x}}\times {\left[\rho\frac{\partial \mathbf{v}}{\partial t} + \frac{\partial \rho}{\partial t}~\mathbf{v} + \rho~\boldsymbol{\nabla}\mathbf{v}\cdot\mathbf{v} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = - (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - (\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) + \mathcal{E}:\boldsymbol{\sigma}^T

The material time derivative of \mathbf{v} is defined as

 \dot{\mathbf{v}} = \frac{\partial \mathbf{v}}{\partial t} + \boldsymbol{\nabla} \mathbf{v}\cdot\mathbf{v} ~.

Therefore,

 {\mathbf{x}}\times {\left[\rho~\dot{\mathbf{v}} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} \right]} = - \mathbf{x}\times\cfrac{\partial \rho}{\partial t}~\mathbf{v} + - (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) - (\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) + \mathcal{E}:\boldsymbol{\sigma}^T ~.

Also, from the conservation of linear momentum

 \rho~\dot{\mathbf{v}} - \boldsymbol{\nabla} \bullet \boldsymbol{\sigma} - \rho~\mathbf{b} = 0 ~.

Hence,

 \begin{align} 0 & = \mathbf{x}\times\cfrac{\partial\rho}{\partial t}~\mathbf{v} + (\rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times~\mathbf{v}) + (\boldsymbol{\nabla} \rho\cdot\mathbf{v})(\mathbf{x}\times\mathbf{v}) - \mathcal{E}:\boldsymbol{\sigma}^T \ & = \left(\frac{\partial \rho}{\partial t} + \rho\boldsymbol{\nabla} \bullet \mathbf{v} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} \right)(\mathbf{x}\times\mathbf{v}) - \mathcal{E}:\boldsymbol{\sigma}^T ~. \end{align}

The material time derivative of ρ is defined as

 \dot{\rho} = \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \rho\cdot\mathbf{v} ~.

Hence,

 (\dot{\rho} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v})(\mathbf{x}\times\mathbf{v}) - \mathcal{E}:\boldsymbol{\sigma}^T = 0 ~.

From the balance of mass

 \dot{\rho} + \rho~\boldsymbol{\nabla} \bullet \mathbf{v} = 0 ~.

Therefore,

 \mathcal{E}:\boldsymbol{\sigma}^T = 0 ~.

In index notation,

 e_{ijk}~\sigma_{kj} = 0 ~.

Expanding out, we get

 \sigma_{12} - \sigma_{21} = 0 ~;~~ \sigma_{23} - \sigma_{32} = 0 ~;~~ \sigma_{31} - \sigma_{13} = 0 ~.

Hence,

 { \boldsymbol{\sigma} = \boldsymbol{\sigma}^T }

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message