•   Wikis

# Continuum mechanics/Relations between surface and volume integrals: Wikis

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

# Study guide

Up to date as of January 14, 2010

## Surface-volume integral relation 1

Let Ω be a body and let $\partial{\Omega}$ be its surface. Let $\mathbf{n}$ be the normal to the surface. Let $\mathbf{v}$ be a vector field on Ω and let $\boldsymbol{S}$ be a second-order tensor field on Ω. Show that

$\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\cdot\mathbf{n})~\text{dA} = \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV} ~.$

Proof:

Recall the relation

$\boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = \mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}] ~.$

Integrating over the volume, we have

$\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = \int_{\Omega} \mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}~\text{dV}~.$

Since $\mathbf{a}$ and $\mathbf{b}$ are constant, we have

$\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = \mathbf{a}\cdot\left[\left\{\int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV}\right\}\cdot\mathbf{b}\right]~.$

From the divergence theorem,

$\int_{\Omega} \boldsymbol{\nabla} \bullet \mathbf{u}~\text{dV} = \int_{\partial{\Omega}} \mathbf{u}\cdot\mathbf{n}~\text{dA}$

we get

$\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = \int_{\partial{\Omega}} [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]\cdot\mathbf{n}~\text{dA} ~.$

Using the relation

$[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})]\cdot\mathbf{n} = \mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}]$

we get

$\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = \int_{\partial{\Omega}} \mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}]~\text{dA} ~.$

Since $\mathbf{a}$ and $\mathbf{b}$ are constant, we have

$\int_{\Omega} \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})]~\text{dV} = \mathbf{a}\cdot\left[\left\{\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})~\text{dA}\right\}\cdot\mathbf{b}\right] ~.$

Therefore,

$\mathbf{a}\cdot\left[\left\{\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})~\text{dA}\right\}\cdot\mathbf{b}\right]= \mathbf{a}\cdot\left[\left\{\int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV}\right\}\cdot\mathbf{b}\right]~.$

Since $\mathbf{a}$ and $\mathbf{b}$ are arbitrary, we have

${ \int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})~\text{dA} = \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV} } \qquad\qquad\qquad\square$

## Surface-volume integral relation 2

Let Ω be a body and let $\partial{\Omega}$ be its surface. Let $\mathbf{n}$ be the normal to the surface. Let $\mathbf{v}$ be a vector field on Ω. Show that

$\int_{\Omega} \boldsymbol{\nabla} \mathbf{v}~\text{dV} = \int_{\partial{\Omega}} \mathbf{v}\otimes\mathbf{n}~\text{dA}~.$

Proof:

Recall that

$\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{S}^T\cdot\mathbf{n})~\text{dA} = \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\text{dV}$

where $\boldsymbol{S}$ is any second-order tensor field on Ω. Let us assume that $\boldsymbol{S} = \boldsymbol{\mathit{1}}$. Then we have

$\int_{\partial{\Omega}} \mathbf{v}\otimes(\boldsymbol{\mathit{1}}\cdot\mathbf{n})~\text{dA} = \int_{\Omega} [\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{\mathit{1}} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{\mathit{1}})]~\text{dV}$

Now,

$\boldsymbol{\mathit{1}}\cdot\mathbf{n} = \mathbf{n} ~;~~ \boldsymbol{\nabla} \bullet \boldsymbol{\mathit{1}} = \mathbf{0} ~;~~ \boldsymbol{A}\cdot\boldsymbol{\mathit{1}} = \boldsymbol{A}$

where $\boldsymbol{A}$ is any second-order tensor. Therefore,

$\int_{\partial{\Omega}} \mathbf{v}\otimes\mathbf{n}~\text{dA} = \int_{\Omega} \boldsymbol{\nabla} \mathbf{v}~\text{dV} ~.$

Rearranging,

${ \int_{\Omega} \boldsymbol{\nabla} \mathbf{v}~\text{dV} = \int_{\partial{\Omega}} \mathbf{v}\otimes\mathbf{n}~\text{dA} \qquad \square }$