The Full Wiki

More info on Continuum mechanics/Tensor-vector identities

Continuum mechanics/Tensor-vector identities: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Study guide

Up to date as of January 14, 2010

From Wikiversity

Tensor-vector identity - 1

 [(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})]\cdot\mathbf{n} = \mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}] ~.

Proof:

Using the identity  \mathbf{a}\cdot(\boldsymbol{A}^T\cdot\mathbf{b}) = \mathbf{b}\cdot(\boldsymbol{A}\cdot\mathbf{a}) we have

 \mathbf{n}\cdot[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})] = \mathbf{b}\cdot[(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}^T\cdot\mathbf{n})] ~.

Also, using the definition  (\mathbf{u}\otimes\mathbf{v})\cdot\mathbf{a} = (\mathbf{a}\cdot\mathbf{v})\mathbf{u} we have

 (\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}^T\cdot\mathbf{n}) = [(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}]\cdot\mathbf{a}~.

Therefore,

 \mathbf{n}\cdot[(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})] = \mathbf{b}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}\cdot\mathbf{a}]~.

Using the identity  \mathbf{a}\cdot(\boldsymbol{A}^T\cdot\mathbf{b}) = \mathbf{b}\cdot(\boldsymbol{A}\cdot\mathbf{a}) we have

 \mathbf{b}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}\cdot\mathbf{a}] = \mathbf{a}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}^T\cdot\mathbf{b}]~.

Finally, using the relation (\mathbf{u}\otimes\mathbf{v})^T = \mathbf{v}\otimes\mathbf{u}, we get

 \mathbf{a}\cdot[\{(\boldsymbol{S}^T\cdot\mathbf{n})\otimes\mathbf{v}\}^T\cdot\mathbf{b}] = \mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\cdot\mathbf{n})\}\cdot\mathbf{b}]~.

Hence,

 { [(\mathbf{v}\bullet\mathbf{a})(\boldsymbol{S}\bullet\mathbf{b})]\cdot\mathbf{n} = \mathbf{a}\cdot[\{\mathbf{v}\otimes(\boldsymbol{S}^T\bullet\mathbf{n})\}\cdot\mathbf{b}]} \qquad \qquad \qquad \square

Tensor-vector identity 2

Let \mathbf{v} be a vector field and let \boldsymbol{S} be a second-order tensor field. Let \mathbf{a} and \mathbf{b} be two arbitrary vectors. Show that

 \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = \mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}] ~.

Proof:

Using the identity \boldsymbol{\nabla} \bullet (\varphi~\mathbf{u}) = \mathbf{u}\cdot\boldsymbol{\nabla} \varphi + \varphi~\boldsymbol{\nabla} \bullet \mathbf{u} we have

 \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = (\boldsymbol{S}\cdot\mathbf{b})\cdot\boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a}) + (\mathbf{v}\cdot\mathbf{a})~\boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) ~.

From the identity \boldsymbol{\nabla} (\mathbf{u}\cdot\mathbf{v}) = \boldsymbol{\nabla}\mathbf{u}^T\cdot\boldsymbol{\nabla} \mathbf{v} + \boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{u}, we have \boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a}) = \boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{a} + \boldsymbol{\nabla} \mathbf{a}^T\cdot\mathbf{v}.

Since \mathbf{a} is constant, \boldsymbol{\nabla} \mathbf{a} = 0, and we have

 (\boldsymbol{S}\cdot\mathbf{b})\cdot\boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a})= (\boldsymbol{S}\cdot\mathbf{b})\cdot(\boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{a})~.

From the relation  \mathbf{a}\cdot(\boldsymbol{A}^T\cdot\mathbf{b}) = \mathbf{b}\cdot(\boldsymbol{A}\cdot\mathbf{a}) we have

 (\boldsymbol{S}\cdot\mathbf{b})\cdot(\boldsymbol{\nabla} \mathbf{v}^T\cdot\mathbf{a}) = \mathbf{a}\cdot[\boldsymbol{\nabla} \mathbf{v}\cdot(\boldsymbol{S}\cdot\mathbf{b})] ~.

Using the relation \boldsymbol{A}\cdot(\boldsymbol{B}\cdot\mathbf{b}) = (\boldsymbol{A}\cdot\boldsymbol{B})\cdot\mathbf{b}, we get

 \boldsymbol{\nabla} \mathbf{v}\cdot(\boldsymbol{S}\cdot\mathbf{b}) = (\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S})\cdot\mathbf{b} ~.

Therefore, the final form of the first term is

 (\boldsymbol{S}\cdot\mathbf{b})\cdot\boldsymbol{\nabla} (\mathbf{v}\cdot\mathbf{a})= \mathbf{a}\cdot[(\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S})\cdot\mathbf{b}] ~.

For the second term, from the identity \boldsymbol{\nabla} \bullet (\boldsymbol{S}^T\cdot\mathbf{v}) = \boldsymbol{S}:\boldsymbol{\nabla} \mathbf{v} + \mathbf{v}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}) we get, \boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) = \boldsymbol{S}^T:\boldsymbol{\nabla} \mathbf{b} + \mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T).

Since \mathbf{b} is constant, \boldsymbol{\nabla} \mathbf{b} = 0, and we have

 (\mathbf{v}\cdot\mathbf{a})~\boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) = (\mathbf{v}\cdot\mathbf{a})~[\mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)] = \mathbf{a}\cdot[\{\mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}~\mathbf{v}] ~.

From the definition  (\mathbf{u}\otimes\mathbf{v})\cdot\mathbf{a} = (\mathbf{a}\cdot\mathbf{v})\mathbf{u} , we get

 [\mathbf{b}\cdot(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]~\mathbf{v} = [\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]\cdot\mathbf{b} ~.

Therefore, the final form of the second term is

 (\mathbf{v}\cdot\mathbf{a})~\boldsymbol{\nabla} \bullet (\boldsymbol{S}\cdot\mathbf{b}) = \mathbf{a}\cdot[\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]\cdot\mathbf{b} ~.

Adding the two terms, we get

 \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = \mathbf{a}\cdot[(\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S})\cdot\mathbf{b}] + \mathbf{a}\cdot[\mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)]\cdot\mathbf{b} ~.

Therefore,

 { \boldsymbol{\nabla} \bullet [(\mathbf{v}\cdot\mathbf{a})(\boldsymbol{S}\cdot\mathbf{b})] = \mathbf{a}\cdot[\{\boldsymbol{\nabla} \mathbf{v}\cdot\boldsymbol{S} + \mathbf{v}\otimes(\boldsymbol{\nabla} \bullet \boldsymbol{S}^T)\}\cdot\mathbf{b}] } \qquad\qquad\qquad\square

Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message