The Full Wiki

Cycloaddition: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

A cycloaddition is a pericyclic chemical reaction, in which "two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of the bond multiplicity."[1] The resulting reaction is a cyclization reaction.

Cycloadditions are usually described by the backbone size of the participants. This would make the Diels-Alder reaction a [4 + 2]cycloaddition, and the 1,3-dipolar cycloaddition a [3 + 2]cycloaddition. This type of reaction is non-polar addition reaction.


Reaction mechanism

Thermal cycloadditions usually have (4n + 2) π electrons participating in the starting material, for some integer n. These occur, for reasons of orbital symmetry, in a suprafacial-suprafacial or antarafacial-antarafacial manner (rare). There are a few examples of thermal cycloadditions which have 4n π electrons (for example the [2 + 2] cycloaddition); these proceed in a suprafacial-antarafacial sense, such as the dimerisation of ketene, in which the orthogonal set of p orbitals allows the reaction to proceed via a crossed transition state.

Cycloadditions in which 4n π electrons participate can also occur as a result of photochemical activation. Here, one component has an electron promoted from the HOMO (π bonding) to the LUMO (π* antibonding). Orbital symmetry is then such that the reaction can proceed in a suprafacial-suprafacial manner. An example is the DeMayo reaction. Another example is shown below, the photochemical dimerization of cinnamic acid.[2][3]

Cinnamic Acid CycloAddition

Note that not all photochemical (2+2) cyclizations are cycloadditions; some are known to operate by radical mechanisms.

Some cycloadditions instead of π bonds operate through strained cyclopropane rings; as these have significant π character. For example, an analog for the Diels-Alder reaction is the quadricyclane-DMAD reaction:


In the (i+j+...) cycloaddition notation i and j refer to the number of atoms involved in the cycloaddition. In this notation a Diels-Alder reaction is a (4+2)cycloaddition and a 1,3-dipolar addition such as the first step in ozonolysis is a (3+2)cycloaddition. The IUPAC preferred notation however, with [i+j+...] takes electrons into account and not atoms. In this notation the DA reaction and the dipolar reaction both become a [4+2]cycloaddition. The reaction between norbornadiene and an activated alkyne is a [2+2+2]cycloaddition.

Types of cycloaddition

Two major cycloaddition reactions are :

Formal cycloadditions

Cycloadditions often have metal-catalyzed and stepwise radical analogs, however these are not strictly speaking pericyclic reactions. When in a cycloaddition charged or radical intermediates are involved or when the cycloaddition result is obtained in a series of reaction steps they are sometimes called formal cycloadditions to make the distinction with true pericyclic cycloadditions.

One example of a formal [3+3]cycloaddition between a cyclic enone and an enamine catalyzed by n-butyllithium is a Stork enamine / 1,2-addition cascade reaction:[4]

Intermolecular Formal [3+3] Cycloaddition Reaction


  1. ^ International Union of Pure and Applied Chemistry. "Cycloaddition". Compendium of Chemical Terminology Internet edition.
  2. ^ Hein, Sara M. (June 2006). "An Exploration of a Photochemical Pericyclic Reaction Using NMR Data". Journal of Chemical Education 83: 940 – 942.  
  3. ^ The two trans alkenes react head-to-tail, and the isolated isomer is called truxillic acid
  4. ^ Movassaghi, Mohammad; Bin Chen (2007). "Stereoselective Intermolecular Formal [3+3] Cycloaddition Reaction of Cyclic Enamines and Enones". Angew. Chem. Int. Ed. 46: 565 – 568. doi:10.1002/anie.200603302.  


Got something to say? Make a comment.
Your name
Your email address