Diamond: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...

More interesting facts on Diamond

Include this on your site/blog:


From Wikipedia, the free encyclopedia

Seven clear faceted gems, six small stones of similar size and a large one.
A scattering of round-brilliant cut diamonds shows off the many reflecting facets.
Category Native Minerals
Chemical formula C
Molar mass 12.01 g·mol-1
Color Typically yellow, brown or gray to colorless. Less often blue, green, black, translucent white, pink, violet, orange, purple and red.
Crystal habit Octahedral
Crystal system Isometric-Hexoctahedral (Cubic)
Cleavage 111 (perfect in four directions)
Fracture Conchoidal (shell-like)
Mohs scale hardness 10
Luster Adamantine
Streak colorless
Diaphaneity Transparent to subtransparent to translucent
Specific gravity 3.52±0.01
Density 3.5–3.53 g/cm3
Polish luster Adamantine
Optical properties Singly Refractive
Refractive index 2.418 (at 500 nm)
Birefringence None
Pleochroism None
Dispersion 0.044
References [1][2]

In mineralogy, diamond (from the ancient Greek ἀδάμας - adámas "unbreakable") is an allotrope of carbon, where the carbon atoms are arranged in a variation of the face-centered cubic crystal structure called a diamond lattice. Diamond is less stable than graphite, but the conversion rate from diamond to graphite is negligible at ambient conditions. Diamond is renowned as a material with superlative physical qualities, most of which originate from the strong covalent bonding between its atoms. In particular, diamond has the highest hardness and thermal conductivity of any bulk material. Those properties determine the major industrial application of diamond in cutting and polishing tools.

Diamond has remarkable optical characteristics. Because of its extremely rigid lattice, it can be contaminated by very few types of impurities, such as boron and nitrogen. Combined with the wide transparency, this results in the clear, colorless appearance of most natural diamonds. Small amounts of defects or impurities (about one per million of lattice atoms) color diamond blue (boron), yellow (nitrogen), brown (lattice defects), green, purple, pink, orange or red. Diamond also has relatively high optical dispersion, that is ability to disperse light of different colors, which results in its characteristic luster. Excellent optical and mechanical properties, combined with efficient marketing, make diamond the most popular gemstone.

Most natural diamonds are formed at high-pressure high-temperature conditions existing at depths of 140 to 190 kilometers (87 to 120 mi) in the Earth mantle. Carbon-containing minerals provide the carbon source, and the growth occurs over periods from 1 billion to 3.3 billion years (25% to 75% of the age of the Earth). Diamonds are brought close to the Earth surface through deep volcanic eruptions by a magma, which cools into igneous rocks known as kimberlites and lamproites. Diamonds can also be produced synthetically in a high-pressure high-temperature process which approximately simulates the conditions in the Earth mantle. An alternative, and completely different growth technique is chemical vapor deposition. Several non-diamond materials, which include cubic zirconia and silicon carbide and are often called diamond simulants, resemble diamond in appearance and many properties. Special gemological techniques have been specially developed to distinguish natural and synthetic diamonds and diamond simulants.



The name diamond is derived from the ancient Greek ἀδάμας (adámas), "proper", "unalterable", "unbreakable, untamed", from ἀ- (a-), "un-" + δαμάω (damáō), "I overpower, I tame".[3] Diamonds are thought to have been first recognized and mined in India, where significant alluvial deposits of the stone could be found many centuries ago along the rivers Penner, Krishna and Godavari. Diamonds have been known in India for at least 3,000 years but most likely 6,000 years.[4]

Diamonds have been treasured as gemstones since their use as religious icons in ancient India. Their usage in engraving tools also dates to early human history.[5][6] The popularity of diamonds has risen since the 19th century because of increased supply, improved cutting and polishing techniques, growth in the world economy, and innovative and successful advertising campaigns.[7]

In 1813, Humphry Davy used a lens to concentrate the rays of the sun on a diamond in an atmosphere of oxygen, and showed that the only product of the combustion was carbon dioxide, proving that diamond is composed of carbon. Later, he showed that in an atmosphere devoid of oxygen, diamond is converted to graphite.[8]

The most familiar use of diamonds today is as gemstones used for adornment, a use which dates back into antiquity. The dispersion of white light into spectral colors is the primary gemological characteristic of gem diamonds. In the twentieth century, experts in gemology have developed methods of grading diamonds and other gemstones based on the characteristics most important to their value as a gem. Four characteristics, known informally as the four Cs, are now commonly used as the basic descriptors of diamonds: these are carat, cut, color, and clarity.[9] A large, flawless diamond is known as a paragon.

Material properties

Four panels. First, seven clear faceted gems, six small and a large one. Second, black material with uneven surface. Third, three parallel atomic sheets, each resembling a chicken wire hedge. Fourth, a boxed atomic structure containing tetrahedrally arranged balls connected by 0.15 nm bonds.
Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in structure.

A diamond is a transparent crystal of tetrahedrally bonded carbon atoms (sp3) that crystallizes into the diamond lattice which is a variation of the face centered cubic structure. Diamonds have been adapted for many uses because of the material's exceptional physical characteristics. Most notable are its extreme hardness and thermal conductivity (900–2,320 W·m−1·K−1),[10] as well as wide bandgap and high optical dispersion.[11] Above 1,700 °C (1,973 K / 3,583 °F) in vacuum or oxygen-free atmosphere, diamond converts to graphite; in air, transformation starts at ~700 °C.[12] Naturally occurring diamonds have a density ranging from 3.15–3.53 g/cm3, with pure diamond close to 3.52 g/cm3.[1] Despite the hardness of diamonds, the chemical bonds that hold the carbon atoms in diamonds together are weaker than those that hold together the other form of pure carbon, graphite. The difference is that in diamonds, the bonds form an inflexible three-dimensional lattice. In graphite, the atoms are tightly bonded into sheets, which can slide easily over one another.[13]


Diamond is the hardest natural material known, where hardness is defined as resistance to scratching and is graded between 1 (softest) and 10 (hardest) using the Mohs scale of mineral hardness. Diamond has a hardness of 10 (hardest) on this scale.[14] Diamond's hardness has been known since antiquity, and is the source of its name.

The diamond hardness depends on its purity, crystalline perfection and orientation: hardness is higher for flawless, pure crystals oriented to the <111> direction (along the longest diagonal of the cubic diamond lattice).[15] Therefore, whereas it might be possible to scratch some diamonds with other materials, such as boron nitride, the hardest diamonds can only be scratched by other diamonds. In particular, nanocrystalline diamond aggregates were measured to be harder than any large single crystal diamond. Those aggregates are produced by high-pressure high-temperature treatment of graphite or fullerite (C60).[16]

The hardness of diamond contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in engagement or wedding rings, which are often worn every day.

The hardest natural diamonds mostly originate from the Copeton and Bingara fields located in the New England area in New South Wales, Australia. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is associated with the crystal growth form, which is single-stage crystal growth. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness. It is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds that are harder than the diamonds used in hardness gauges.[17]

Somewhat related to hardness is another mechanical property toughness, which is a material's ability to resist breakage from forceful impact. The toughness of natural diamond has been measured as 2.0 MPa·m1/2,[18] and the critical stress intensity factor is 3.4 MN·m−3/2.[19] Those values are good compared to other gemstones, but poor compared to most engineering materials. As with any material, the macroscopic geometry of a diamond contributes to its resistance to breakage. Diamond has a cleavage plane and is therefore more fragile in some orientations than others. Diamond cutters use this attribute to cleave some stones, prior to faceting.[20]

Electrical conductivity

Other specialized applications also exist or are being developed, including use as semiconductors: some blue diamonds are natural semiconductors, in contrast to most diamonds, which are excellent electrical insulators.[21] The conductivity and blue color originate from the boron impurity. Boron substitutes for carbon atoms in the diamond lattice, donating a hole into the valence band.[21]

Substantial conductivity is commonly observed in nominally undoped diamond grown by chemical vapor deposition. This conductivity is associated with hydrogen-related species adsorbed at the surface, and it can be removed by annealing or other surface treatments.[22][23]


Diamond has a wide bandgap of 5.5 eV corresponding to the deep ultraviolet wavelength of 225 nanometers. This means pure diamond should transmit visible light and appear as a clear colorless crystal. Colors in diamond originate from lattice defects and impurities. The diamond crystal lattice is exceptionally strong and only atoms of nitrogen, boron and hydrogen can be introduced into diamond during the growth at significant concentrations (up to atomic percents). Transition metals Ni and Co, which are commonly used for growth of synthetic diamond by the high-pressure high-temperature techniques, have been detected in diamond as individual atoms; the maximum concentration is 0.01% for Ni[24] and even much less for Co. Virtually any element can be introduced to diamond by ion implantation.[25]

Nitrogen is by far the most common impurity found in gem diamonds. Nitrogen is responsible for the yellow and brown in diamonds. Boron is responsible for the gray blue colors.[11] Color in diamond has two additional sources: irradiation (usually by alpha particles), that causes the color in green diamonds; and physical deformation of the diamond crystal known as plastic deformation. Plastic deformation is the cause of color in some brown[26] and perhaps pink and red diamonds.[27] In order of rarity, colorless diamond, by far the most common, is followed by yellow and brown, by far the most common colors, then by blue, green, black, translucent white, pink, violet, orange, purple, and the rarest, red.[20] "Black", or Carbonado, diamonds are not truly black, but rather contain numerous dark inclusions that give the gems their dark appearance. Colored diamonds contain impurities or structural defects that cause the coloration, while pure or nearly pure diamonds are transparent and colorless. Most diamond impurities replace a carbon atom in the crystal lattice, known as a carbon flaw. The most common impurity, nitrogen, causes a slight to intense yellow coloration depending upon the type and concentration of nitrogen present.[20] The Gemological Institute of America (GIA) classifies low saturation yellow and brown diamonds as diamonds in the normal color range, and applies a grading scale from "D" (colorless) to "Z" (light yellow). Diamonds of a different color, such as blue, are called fancy colored diamonds, and fall under a different grading scale.[20]

In 2008, the Wittelsbach Diamond, a 35.56 carats (7.11 g) blue diamond once belonging to the King of Spain, fetched over US$24 million at a Christie's auction.[28] In May 2009, a 7.03 carats (1.41 g) blue diamond fetched the highest price per carat ever paid for a diamond when it was sold at auction for 10.5 million Swiss francs (6.97 million Euro or US$9.5 million at the time).[29] That record was however beaten the same year: a 5-carat vivid pink diamond was sold for $10.8 million in Hong Kong on December 1, 2009.[30]


Diamonds can be identified by their high thermal conductivity. Their high refractive index is also indicative, but other materials have similar refractivity. Diamonds cut glass, but this does not positively identify a diamond because other materials, such as quartz, also lie above glass on the Mohs scale and can also cut it. Diamonds can scratch other diamonds, but this can result in damage to one or both stones. Hardness tests are infrequently used in practical gemology because of their potentially destructive nature.[14] The extreme hardness and high value of diamond means that gems are typically polished slowly using painstaking traditional techniques and greater attention to detail than is the case with most other gemstones;[31] these tend to result in extremely flat, highly polished facets with exceptionally sharp facet edges. Diamonds also possess an extremely high refractive index and fairly high dispersion. Taken together, these factors affect the overall appearance of a polished diamond and most diamantaires still rely upon skilled use of a loupe (magnifying glass) to identify diamonds 'by eye'.[32]

Natural history

The formation of natural diamond requires very specific conditions—exposure of carbon-bearing materials to high pressure, ranging approximately between 45 and 60 kilobars, but at a comparatively low temperature range between approximately 900–1300 °C. These conditions are met in two places on Earth; in the lithospheric mantle below relatively stable continental plates, and at the site of a meteorite strike.[33]

Formation in cratons

A triangular facet of a crystal having triangular etch pits with the largest having a base length of about 0.2 mm
One face of an uncut octahedral diamond, showing trigons (of positive and negative relief) formed by natural chemical etching

The conditions for diamond formation to happen in the lithospheric mantle occur at considerable depth corresponding to the requirements of temperature and pressure. These depths are estimated between 140 and 190 km though occasionally diamonds have crystallized at depths about 300 km as well.[34] The rate at which temperature changes with increasing depth into the Earth varies greatly in different parts of the Earth. In particular, under oceanic plates the temperature rises more quickly with depth, beyond the range required for diamond formation at the depth required. The correct combination of temperature and pressure is only found in the thick, ancient, and stable parts of continental plates where regions of lithosphere known as cratons exist. Long residence in the cratonic lithosphere allows diamond crystals to grow larger.[34]

A clear octahedral stone protrudes from a black rock.
The slightly misshapen octahedral shape of this rough diamond crystal in matrix is typical of the mineral. Its lustrous faces also indicate that this crystal is from a primary deposit.

Through studies of carbon isotope ratios (similar to the methodology used in carbon dating, except with the stable isotopes C-12 and C-13), it has been shown that the carbon found in diamonds comes from both inorganic and organic sources. Some diamonds, known as harzburgitic, are formed from inorganic carbon originally found deep in the Earth's mantle. In contrast, eclogitic diamonds contain organic carbon from organic detritus that has been pushed down from the surface of the Earth's crust through subduction (see plate tectonics) before transforming into diamond. These two different source of carbon have measurably different 13C:12C ratios. Diamonds that have come to the Earth's surface are generally quite old, ranging from under 1 billion to 3.3 billion years old. This is 22% to 73% of the age of the Earth.[34]

Diamonds occur most often as euhedral or rounded octahedra and twinned octahedra known as macles. As diamond's crystal structure has a cubic arrangement of the atoms, they have many facets that belong to a cube, octahedron, rhombicosidodecahedron, tetrakis hexahedron or disdyakis dodecahedron. The crystals can have rounded off and unexpressive edges and can be elongated. Sometimes they are found grown together or form double "twinned" crystals at the surfaces of the octahedron. These different shapes and habits of the diamonds result from differing external circumstances. Diamonds (especially those with rounded crystal faces) are commonly found coated in nyf, an opaque gum-like skin.[35]

Formation in meteorite impact craters

Diamonds can also form in other natural high-pressure events. Very small diamonds of micrometer and nanometer sizes, known as microdiamonds or nanodiamonds respectively, have been found in meteorite impact craters. Such impact events create shock zones of high pressure and temperature suitable for diamond formation. Impact-type microdiamonds can be used as an indicator of ancient impact craters.[33]

Extraterrestrial formation

Not all diamonds found on Earth originated here. A type of diamond called carbonado that is found in South America and Africa may have been deposited there via an asteroid impact (not formed from the impact) about 3 billion years ago. These diamonds may have formed in the intrastellar environment, but as of 2008, there was no scientific consensus on how carbonado diamonds originated.[36][37]

Presolar grains in many meteorites found on Earth contain nanodiamonds of extraterrestrial origin, probably formed in supernovas. Scientific evidence indicates that white dwarf stars have a core of crystallized carbon and oxygen nuclei. The largest of these found in the universe so far, BPM 37093, is located 50 light-years (4.7×1014 km) away in the constellation Centaurus. A news release from the Harvard-Smithsonian Center for Astrophysics described the 2,500-mile (4,000 km) wide stellar core as a diamond.[38] It was referred to as Lucy, after the Beatles' song "Lucy in the Sky With Diamonds".[17][39]

Carbon planets as well as Gas Giants like Jupiter are suspected to have mantles and surfaces rich in diamonds.


Schematic cross section of an underground region 3 km deep and 2 km wide. A red dike stretches across the bottom, and a pipe containing some xenoliths runs from the dike to the surface, varying from red at the bottom to orange-yellow at the top. The pipe's root, at its bottom, is about 1 km long, and its diatreme, above the root, is about 1.5 km long. The pipe's top is a crater, rimmed by a tuff ring and containing washed-back ejecta. The erosion level is almost zero for Orapa, about 1 km for Jagersfontein, and about 1.4 km for Kimberley.
Schematic diagram of a volcanic pipe

Diamond-bearing rock is brought close to the surface through deep-origin volcanic eruptions. The magma for such a volcano must originate at a depth where diamonds can be formed[34]—150 km (93 mi) or more (three times or more the depth of source magma for most volcanoes). This is a relatively rare occurrence. These typically small surface volcanic craters extend downward in formations known as volcanic pipes.[34] The pipes contain material that was transported toward the surface by volcanic action, but was not ejected before the volcanic activity ceased. During eruption these pipes are open to the surface, resulting in open circulation; many xenoliths of surface rock and even wood and fossils are found in volcanic pipes. Diamond-bearing volcanic pipes are closely related to the oldest, coolest regions of continental crust (cratons). This is because cratons are very thick, and their lithospheric mantle extends to great enough depth that diamonds are stable. Not all pipes contain diamonds, and even fewer contain enough diamonds to make mining economically viable.[34]

The magma in volcanic pipes is usually one of two characteristic types, which cool into igneous rock known as either kimberlite or lamproite.[34] The magma itself does not contain diamond; instead, it acts as an elevator that carries deep-formed rocks (xenoliths), minerals (xenocrysts), and fluids upward. These rocks are characteristically rich in magnesium-bearing olivine, pyroxene, and amphibole minerals[34] which are often altered to serpentine by heat and fluids during and after eruption. Certain indicator minerals typically occur within diamantiferous kimberlites and are used as mineralogical tracers by prospectors, who follow the indicator trail back to the volcanic pipe which may contain diamonds. These minerals are rich in chromium (Cr) or titanium (Ti), elements which impart bright colors to the minerals. The most common indicator minerals are chromium garnets (usually bright red chromium-pyrope, and occasionally green ugrandite-series garnets), eclogitic garnets, orange titanium-pyrope, red high-chromium spinels, dark chromite, bright green chromium-diopside, glassy green olivine, black picroilmenite, and magnetite. Kimberlite deposits are known as blue ground for the deeper serpentinized part of the deposits, or as yellow ground for the near surface smectite clay and carbonate weathered and oxidized portion.[34]

Once diamonds have been transported to the surface by magma in a volcanic pipe, they may erode out and be distributed over a large area. A volcanic pipe containing diamonds is known as a primary source of diamonds. Secondary sources of diamonds include all areas where a significant number of diamonds have been eroded out of their kimberlite or lamproite matrix, and accumulated because of water or wind action. These include alluvial deposits and deposits along existing and ancient shorelines, where loose diamonds tend to accumulate because of their size and density. Diamonds have also rarely been found in deposits left behind by glaciers (notably in Wisconsin and Indiana); in contrast to alluvial deposits, glacial deposits are minor and are therefore not viable commercial sources of diamond.[34]


A world map showing that roughly half of diamonds originate from Africa, and one-third from Australia. The remaining part is mostly due to Russia with minor contributions from Canada and China.
Diamond output in 2005

Approximately 130 million carats (26,000 kg (57,000 lb)) of diamonds are mined annually, with a total value of nearly US$9 billion, and about 100,000 kg (220,000 lb) are synthesized annually.[40]

Roughly 49% of diamonds originate from central and southern Africa, although significant sources of the mineral have been discovered in Canada, India, Russia, Brazil, and Australia.[41] They are mined from kimberlite and lamproite volcanic pipes, which can bring diamond crystals, originating from deep within the Earth where high pressures and temperatures enable them to form, to the surface. The mining and distribution of natural diamonds are subjects of frequent controversy such as with concerns over the sale of blood diamonds or conflict diamonds by African paramilitary groups.[42] The diamond supply chain is controlled by a limited number of powerful businesses, and is also highly concentrated in a small number of locations around the world (see figure).

Only a very small fraction of the diamond ore consists of actual diamonds. The ore is crushed, during which care is required not to destroy larger diamonds, and then sorted by density. Today, diamonds are located in the diamond-rich density fraction with the help of X-ray fluorescence, after which the final sorting steps are done by hand. Before the use of X-rays became commonplace,[43] the separation was done with grease belts; diamonds have a stronger tendency to stick to grease than the other minerals in the ore.[20]

Historically diamonds were found only in alluvial deposits in southern India.[44] India led the world in diamond production from the time of their discovery in approximately the 9th century BC[4][45] to the mid-18th century AD, but the commercial potential of these sources had been exhausted by the late 18th century and at that time India was eclipsed by Brazil where the first non-Indian diamonds were found in 1725.[4]

Diamond extraction from primary deposits (kimberlites and lamproites) started in the 1870s after the discovery of the Diamond Fields in South Africa.[46] Production has increased over time and now an accumulated total of 4.5 billion carats have been mined since that date.[47] Twenty percent of that amount has been mined in the last five years, and during the last 10 years, nine new mines have started production; four more are waiting to be opened soon. Most of these mines are located in Canada, Zimbabwe, Angola, and one in Russia.[47]

In the U.S., diamonds have been found in Arkansas, Colorado, and Montana.[48][49] In 2004, the discovery of a microscopic diamond in the U.S. led to the January 2008 bulk-sampling of kimberlite pipes in a remote part of Montana.[49][50]

Today, most commercially viable diamond deposits are in Russia (mostly in Sakha Republic, for example Mir pipe and Udachnaya pipe), Botswana, Australia (Northern and Western Australia) and the Democratic Republic of Congo.[51] In 2005, Russia produced almost one-fifth of the global diamond output, reports the British Geological Survey. Australia boasts the richest diamantiferous pipe with production reaching peak levels of 42 metric tons (41 LT; 46 ST) per year in the 1990s.[48] There are also commercial deposits being actively mined in the Northwest Territories of Canada and Brazil.[41] Diamond prospectors continue to search the globe for diamond-bearing kimberlite and lamproite pipes.

Controversial sources

In some of the more politically unstable central African and west African countries, revolutionary groups have taken control of diamond mines, using proceeds from diamond sales to finance their operations. Diamonds sold through this process are known as conflict diamonds or blood diamonds.[42] Major diamond trading corporations continue to fund and fuel these conflicts by doing business with armed groups. In response to public concerns that their diamond purchases were contributing to war and human rights abuses in central and western Africa, the United Nations, the diamond industry and diamond-trading nations introduced the Kimberley Process in 2002.[52] The Kimberley Process aims to ensure that conflict diamonds do not become intermixed with the diamonds not controlled by such rebel groups. This is done by requiring diamond-producing countries to provide proof that the money they make from selling the diamonds is not used to fund criminal or revolutionary activities. Although the Kimberley Process has been moderately successful in limiting the number of conflict diamonds entering the market, some still find their way in. Conflict diamonds constitute 2–3% of all diamonds traded.[53] Two major flaws still hinder the effectiveness of the Kimberley Process: (1) the relative ease of smuggling diamonds across African borders, and (2) the violent nature of diamond mining in nations that are not in a technical state of war and whose diamonds are therefore considered "clean".[52]

The Canadian Government has set up a body known as Canadian Diamond Code of Conduct[54] to help authenticate Canadian diamonds. This is a stringent tracking system of diamonds and helps protect the "conflict free" label of Canadian diamonds.[55]

Commercial markets

A clear faceted gem supported in four clamps attached to a wedding ring
A round brilliant cut diamond set in a ring

The diamond industry can be separated into two distinct categories: one dealing with gem-grade diamonds and another for industrial-grade diamonds. While a large trade in both types of diamonds exists, the two markets act in dramatically different ways.

Gemstones and their distribution

A large trade in gem-grade diamonds exists. Unlike other commodities, such as most precious metals, there is a substantial mark-up in the retail sale of gem diamonds.[56] There is a well-established market for resale of polished diamonds (e.g. pawnbroking, auctions, second-hand jewelry stores, diamantaires, bourses, etc.). One hallmark of the trade in gem-quality diamonds is its remarkable concentration: wholesale trade and diamond cutting is limited to just a few locations; In 2003, 92% of the world's diamonds were cut and polished in Surat, India.[57] Other important centers of diamond cutting and trading are Antwerp, where the International Gemological Institute is based, London, New York City, Tel Aviv, and Amsterdam. A single company—De Beers—controls a significant proportion of the trade in diamonds.[58] They are based in Johannesburg, South Africa and London, England. One contributory factor is the geological nature of diamond deposits: several large primary kimberlite-pipe mines each account for significant portions of market share (such as the Jwaneng mine in Botswana, which is a single large pit operated by De Beers that can produce between 12.5 to 15 million carats of diamonds per year,[59]) whereas secondary alluvial diamond deposits tend to be fragmented amongst many different operators because they can be dispersed over many hundreds of square kilometers (e.g., alluvial deposits in Brazil).

The production and distribution of diamonds is largely consolidated in the hands of a few key players, and concentrated in traditional diamond trading centers, the most important being Antwerp, where 80% of all rough diamonds, 50% of all cut diamonds and more than 50% of all rough, cut and industrial diamonds combined are handled.[60] This makes Antwerp a de facto "world diamond capital". Another important diamond center is New York City, where almost 80% of the world's diamonds are sold, including auction sales.[60] The DeBeers company, as the world's largest diamond miner holds a dominant position in the industry, and has done so since soon after its founding in 1888 by the British imperialist Cecil Rhodes. De Beers owns or controls a significant portion of the world's rough diamond production facilities (mines) and distribution channels for gem-quality diamonds. The Diamond Trading Company (DTC) is a subsidiary of De Beers and markets rough diamonds from De Beers-operated mines. De Beers and its subsidiaries own mines that produce some 40% of annual world diamond production. For most of the 20th century over 80% of the world's rough diamonds passed through De Beers,[61] but in the period 2001–2009 the figure has decreased to around 45%.[62] De Beers sold off the vast majority its diamond stockpile in the late 1990s – early 2000s[63] and the remainder largely represents working stock (diamonds that are being sorted before sale).[64] This was well documented in the press[65] but remains little known to the general public.

As a part of reducing its influence, De Beers withdrew from purchasing diamonds on the open market in 1999 and ceased, at the end of 2008, purchasing Russian diamonds mined by the largest Russian diamond company Alrosa.[66] Alrosa had to suspend their sales in October 2008 due to the global energy crisis and was expected to resume them in late 2009.[67] Apart from Alrosa, other important diamond mining companies include BHP Billiton, which is the world's largest mining company;[68] Rio Tinto Group, the owner of Argyle (100%), Diavik (60%), and Murowa (78%) diamond mines;[69] and Petra Diamonds, the owner of several major diamond mines in Africa.

Further down the supply chain, members of The World Federation of Diamond Bourses (WFDB) act as a medium for wholesale diamond exchange, trading both polished and rough diamonds. The WFDB consists of independent diamond bourses in major cutting centers such as Tel Aviv, Antwerp, Johannesburg and other cities across the USA, Europe and Asia.[20] In 2000, the WFDB and The International Diamond Manufacturers Association established the World Diamond Council to prevent the trading of diamonds used to fund war and inhumane acts. WFDB's additional activities include sponsoring the World Diamond Congress every two years, as well as the establishment of the International Diamond Council (IDC) to oversee diamond grading.

Once purchased by Sightholders (which is a trademark term referring to the companies that have a three-year supply contract with DTC), diamonds are cut and polished in preparation for sale as gemstones ('industrial' stones are regarded as a by-product of the gemstone market; they are used for abrasives).[70] The cutting and polishing of rough diamonds is a specialized skill that is concentrated in a limited number of locations worldwide.[70] Traditional diamond cutting centers are Antwerp, Amsterdam, Johannesburg, New York City, and Tel Aviv. Recently, diamond cutting centers have been established in China, India, Thailand, Namibia and Botswana.[70] Cutting centers with lower cost of labor, notably Surat in Gujarat, India, handle a larger number of smaller carat diamonds, while smaller quantities of larger or more valuable diamonds are more likely to be handled in Europe or North America. The recent expansion of this industry in India, employing low cost labor, has allowed smaller diamonds to be prepared as gems in greater quantities than was previously economically feasible.[60]

Diamonds which have been prepared as gemstones are sold on diamond exchanges called bourses. There are 26 registered diamond bourses in the world.[71] Bourses are the final tightly controlled step in the diamond supply chain; wholesalers and even retailers are able to buy relatively small lots of diamonds at the bourses, after which they are prepared for final sale to the consumer. Diamonds can be sold already set in jewelry, or sold unset ("loose"). According to the Rio Tinto Group, in 2002 the diamonds produced and released to the market were valued at US$9 billion as rough diamonds, US$14 billion after being cut and polished, US$28 billion in wholesale diamond jewelry, and US$57 billion in retail sales.[72]


The image of diamond as a valuable commodity has been preserved through clever marketing campaigns. In particular, the De Beers diamond advertising campaign is acknowledged as one of the most successful and innovative campaigns in history. N. W. Ayer & Son, the advertising firm retained by De Beers in the mid-20th century, succeeded in reviving the American diamond market and opened up new markets, even in countries where no diamond tradition had existed before. N. W. Ayer's multifaceted marketing campaign included product placement, advertising the diamond itself rather than the De Beers brand, and building associations with celebrities and royalty. This coordinated campaign has lasted decades and continues today; it is perhaps best captured by the slogan "a diamond is forever".[7]

Another example of successful diamond marketing is brown Australian diamonds. Brown-colored diamonds have always constituted a significant part of the diamond production, but were considered worthless for jewelry; they were not even assessed on the diamond color scale, and were predominantly used for industrial purposes. The attitude has changed drastically after the development of Argyle diamond mine in Australia in 1986. As a result of an aggressive marketing campaign, brown diamonds have become acceptable gems.[73][74] The change was mostly due to the numbers: the Argyle mine, with its 35 million carats (7,000 kg) of diamonds per year, makes about one-third of global production of natural diamonds;[75] 80% of Argyle diamonds are brown.[76]


A large rectangular pink multifaceted gemstone, set in a decorative surround. The decoration includes a row of small clear faceted gemstones around the main gem's perimeter, and clusters of gems forming a crest on one side. The crest comprises a three-pointed crown faced by two unidentifiable animals.
The Darya-I-Nur Diamond—an example of unusual diamond cut and jewelry arrangement

The mined rough diamonds are converted into gems through a multi-step process called "cutting". Diamonds are extremely hard, but also brittle and can be split up by a single blow. Therefore, diamond cutting is traditionally considered as a delicate procedure requiring skills, scientific knowledge, tools and experience. Its final goal is to produce a faceted jewel where the specific angles between the facets would optimize the diamond luster, that is dispersion of white light, whereas the number and area of facets would determine the weight of the final product. The weight reduction upon cutting is significant and can be of the order of 50%.[43] Several possible shapes are considered, but the final decision is often determined not only by scientific, but also practical considerations. For example the diamond might be intended for display or for wear, in a ring or a necklace, singled or surrounded by other gems of certain color and shape.[77]

The most time-consuming part of the cutting is the preliminary analysis of the rough stone. It needs to address a large number of issues, bears much responsibility, and therefore can last years in case of unique diamonds. The following issues are considered:

  • The hardness of diamond and its ability to cleave strongly depend on the crystal orientation. Therefore, the crystallographic structure of the diamond to be cut is analyzed using X-ray diffraction in order to choose the optimal cutting directions.
  • Most diamonds contain visible non-diamond inclusions and crystal flaws. The cutter has to decide which flaws are to be removed by the cutting and which could be kept.
  • The diamond can be split by a single, well calculated blow of a hammer to a pointed tool, which is quick, but risky. Alternatively, it can be cut with a diamond saw, which is a more reliable but tedious procedure.[77][78]

After initial cutting, the diamond is shaped in numerous stages of polishing. Unlike cutting, which is a responsible but quick operation, polishing removes material by gradual erosion and is extremely time consuming. The associated technique is well developed; it is considered as a routine and can be performed by technicians.[79] After polishing, the diamond is reexamined for possible flaws, either remaining or induced by the process. Those flaws are concealed through various diamond enhancement techniques, such as repolishing, crack filling, or clever arrangement of the stone in the jewelry. Remaining non-diamond inclusions are removed through laser drilling and filling of the voids produced.[14]

Industrial uses

A diamond scalpel consisting of a yellow diamond blade attached to a pen-shaped holder
A scalpel with synthetic diamond blade
A polished metal slab embedded with small diamonds
Diamonds in an angle grinder blade

The market for industrial-grade diamonds operates much differently from its gem-grade counterpart. Industrial diamonds are valued mostly for their hardness and heat conductivity, making many of the gemological characteristics of diamonds, such as clarity and color, irrelevant for most applications. This helps explain why 80% of mined diamonds (equal to about 135 million carats or 27 metric tons annually), unsuitable for use as gemstones, are destined for industrial use. In addition to mined diamonds, synthetic diamonds found industrial applications almost immediately after their invention in the 1950s; another 570 million carats (114 tons) of synthetic diamond is produced annually for industrial use. Approximately 90% of diamond grinding grit is currently of synthetic origin.[41]

The boundary between gem-quality diamonds and industrial diamonds is poorly defined and partly depends on market conditions (for example, if demand for polished diamonds is high, some suitable stones will be polished into low-quality or small gemstones rather than being sold for industrial use). Within the category of industrial diamonds, there is a sub-category comprising the lowest-quality, mostly opaque stones, which are known as bort.[80]

Industrial use of diamonds has historically been associated with their hardness; this property makes diamond the ideal material for cutting and grinding tools. As the hardest known naturally occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. Common industrial adaptations of this ability include diamond-tipped drill bits and saws, and the use of diamond powder as an abrasive. Less expensive industrial-grade diamonds, known as bort, with more flaws and poorer color than gems, are used for such purposes.[81] Diamond is not suitable for machining ferrous alloys at high speeds, as carbon is soluble in iron at the high temperatures created by high-speed machining, leading to greatly increased wear on diamond tools compared to alternatives.[82]

Specialized applications include use in laboratories as containment for high pressure experiments (see diamond anvil cell), high-performance bearings, and limited use in specialized windows.[80] With the continuing advances being made in the production of synthetic diamonds, future applications are becoming feasible. Garnering much excitement is the possible use of diamond as a semiconductor suitable to build microchips, or the use of diamond as a heat sink[83] in electronics.

Synthetics, simulants, and enhancements


Six crystals of cubo-octahedral shapes, each about 2 millimeters in diameter. Two are pale blue, one is pale yellow, one is green-blue, one is dark blue and one green-yellow.
Synthetic diamonds of various colors grown by the high-pressure high-temperature technique

Synthetic diamonds are diamonds manufactured in a laboratory, as opposed to natural diamonds which form naturally within the Earth. The gemological and industrial uses of diamond have created a large demand for rough stones. This demand has been satisfied in large part by synthetic diamonds, which have been manufactured by various processes for more than half a century. However, in recent years it has become possible to produce gem-quality synthetic diamonds of significant size.[34]

The majority of commercially available synthetic diamonds are yellow and are produced by so called High Pressure High Temperature (HPHT) processes.[84] The yellow color is caused by nitrogen impurities. Other colors may also be reproduced such as blue, green or pink, which are a result of the addition of boron or from irradiation after synthesis.[85]

A round, clear gemstone with many facets, the main face being hexagonal, surrounded by many smaller facets.
Colorless gem cut from diamond grown by chemical vapor deposition

Another popular method of growing synthetic diamond is chemical vapor deposition (CVD). The growth occurs under low pressure (below atmospheric pressure). It involves feeding a mixture of gases (typically 1 to 99 methane to hydrogen) into a chamber and splitting them to chemically active radicals in a plasma ignited by microwaves, hot filament, arc discharge, welding torch or laser.[86] This method is mostly used for coatings, but can also produce single crystals several millimeters in size (see picture).[40]

At present, the annual production of gem quality synthetic diamonds is only a few thousand carats, whereas the total production of natural diamonds is around 120 million carats. Despite this fact, a purchaser is more likely to encounter a synthetic when looking for a fancy-colored diamond because nearly all synthetic diamonds are fancy-colored, while only 0.01% of natural diamonds are.[87]


A round sparkling, clear gemstone with many facets.
Gem-cut synthetic silicon carbide

A diamond simulant is defined as a non-diamond material that is used to simulate the appearance of a diamond. Diamond-simulant gems are often referred to as diamante. The most familiar diamond simulant to most consumers is cubic zirconia. The popular gemstone moissanite (silicon carbide) is often treated as a diamond simulant, although it is a gemstone in its own right. While moissanite looks similar to diamond, its main disadvantage as a diamond simulant is that cubic zirconia is far cheaper and arguably equally convincing. Both cubic zirconia and moissanite are produced synthetically.[88]


Diamond enhancements are specific treatments performed on natural or synthetic diamonds (usually those already cut and polished into a gem), which are designed to better the gemological characteristics of the stone in one or more ways. These include laser drilling to remove inclusions, application of sealants to fill cracks, treatments to improve a white diamond's color grade, and treatments to give fancy color to a white diamond.[89]

Coatings are increasingly used to give a diamond simulant such as cubic zirconia a more "diamond-like" appearance. One such substance is diamond-like carbon—an amorphous carbonaceous material that has some physical properties similar to those of the diamond. Advertising suggests that such a coating would transfer some of these diamond-like properties to the coated stone, hence enhancing the diamond simulant. Techniques such as Raman spectroscopy should easily identify such a treatment.[90]


Early diamond identification tests included a scratch test relying on the superior hardness of diamond. This test is destructive, as a diamond can scratch diamond, and is rarely used nowadays. Instead, diamond identification relies on its superior thermal conductivity. Electronic thermal probes are widely used in the gemological centers to separate diamonds from their imitations. These probes consist of a pair of battery-powered thermistors mounted in a fine copper tip. One thermistor functions as a heating device while the other measures the temperature of the copper tip: if the stone being tested is a diamond, it will conduct the tip's thermal energy rapidly enough to produce a measurable temperature drop. This test takes about 2–3 seconds.[91]

Whereas the thermal probe can separate diamonds from most of their simulants, distinguishing between various types of diamond, for example synthetic or natural, irradiated or non-irradiated, etc., requires more advanced, optical techniques. Those techniques are also used for some diamonds simulants, such as silicon carbide, which pass the thermal conductivity test. Optical techniques can distinguish between natural diamonds and synthetic diamonds. They can also identify the vast majority of treated natural diamonds.[92] "Perfect" crystals (at the atomic lattice level) have never been found, so both natural and synthetic diamonds always possess characteristic imperfections, arising from the circumstances of their crystal growth, that allow them to be distinguished from each other.[93]

Laboratories use techniques such as spectroscopy, microscopy and luminescence under shortwave ultraviolet light to determine a diamond's origin.[92] They also use specially made machines to aid them in the identification process. Two screening machines are the DiamondSure and the DiamondView, both produced by the DTC and marketed by the GIA.[94]

Several methods for identifying synthetic diamonds can be performed, depending on the method of production and the color of the diamond. CVD diamonds can usually be identified by an orange fluorescence. D-J colored diamonds can be screened through the Swiss Gemmological Institute's[95] Diamond Spotter. Stones in the D-Z color range can be examined through the DiamondSure UV/visible spectrometer, a tool developed by De Beers.[93] Similarly, natural diamonds usually have minor imperfections and flaws, such as inclusions of foreign material, that are not seen in synthetic diamonds.

See also


  1. ^ a b "Diamond". Mindat. http://www.mindat.org/min-1282.html. Retrieved 2009-07-07.  
  2. ^ "Diamond". WebMineral. http://webmineral.com/data/Diamond.shtml. Retrieved 2009-07-07.  
  3. ^ Liddell, H.G.; Scott, R.. "Adamas". A Greek-English Lexicon. Perseus Project. http://www.perseus.tufts.edu/cgi-bin/ptext?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3D%231145.  
  4. ^ a b c Hershey, W. (1940). The Book of Diamonds. New York: Hearthside Press. pp. 22–28. ISBN 1417977159. http://books.google.com/books?id=35eij1e1al8C&pg=PA23.  
  5. ^ Pliny the Elder (2004). Natural History: A Selection. Penguin Books. p. 371. ISBN 0140444130.  
  6. ^ "Chinese made first use of diamond". BBC News. 2005-05-17. http://news.bbc.co.uk/2/hi/science/nature/4555235.stm. Retrieved 2007-03-21.  
  7. ^ a b Epstein, E.J. (1982). "Have You Ever Tried To Sell a Diamond?". The Atlantic. http://www.theatlantic.com/issues/82feb/8202diamond1.htm. Retrieved 2009-05-05.  
  8. ^ Thomas, J.M.L. (1991). Michael Faraday and the Royal Institution: The Genius of Man and Place. Bristol: Adam Hilger. p. 19. ISBN 0-7503-0145-7.  
  9. ^ Hesse, R. W. (2007). Jewelrymaking through history. Greenwood Publishing Group. p. 42. ISBN 0313335079. http://books.google.com/books?id=DIWEi5Hg93gC&pg=PA42.  
  10. ^ Wei, L.; Kuo, P. K.; Thomas, R. L. (1993). "Thermal conductivity of isotopically modified single crystal diamond". Physical Review Letters 70: 3764. doi:10.1103/PhysRevLett.70.3764.  
  11. ^ a b Walker, J. (1979). "Optical absorption and luminescence in diamond". Reports on Progress in Physics 42: 1605–1659. doi:10.1088/0034-4885/42/10/001.  
  12. ^ John, P (2002). "The oxidation of (100) textured diamond". Diamond and Related Materials 11: 861. doi:10.1016/S0925-9635(01)00673-2.  
  13. ^ Gray, Theodore (September 2009). "Gone in a Flash". Popular Science: 70.  
  14. ^ a b c Read, P. G. (2005). Gemmology. Butterworth-Heinemann. pp. 49–50. ISBN 0750664495. http://books.google.com/books?id=t-OQO3Wk-JsC&pg=PA49.  
  15. ^ Neves, A. J. and Nazaré, M. H. (2001). Properties, Growth and Applications of Diamond. Institution of Engineering and Technology. pp. 142–147. ISBN 0852967853. http://books.google.com/books?id=jtC1mUFZfQcC&pg=PA143.  
  16. ^ Blank, V. (1998). "Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear" (). Diamond and Related Materials 7 (2–5): 427–431. doi:10.1016/S0925-9635(97)00232-X. http://www.nanoscan.info/files/article_03.pdf.  
  17. ^ a b Boser, U. (2008). "Diamonds on Demand". Smithsonian 39 (3): 52–59. http://www.smithsonianmag.com/science-nature/diamonds-on-demand.html.  
  18. ^ Weber, M.J. (2002). Handbook of optical materials. CRC Press. p. 119. ISBN 0849335124. http://books.google.de/books?id=6VpQDoef05wC.  
  19. ^ Field, J.E.; Freeman, C. J. (1981). "Strength and Fracture Properties of Diamond". Philosophical Magazine A (Taylor & Francis) 43 (3): 595–618. doi:10.1080/01418618108240397.  
  20. ^ a b c d e f Harlow, G.E. (1998). The nature of diamonds. Cambridge University Press. p. 223;230-249. ISBN 0521629357. http://books.google.com/books?id=_WI86J88ydAC&pg=PA223.  
  21. ^ a b Collins, A.T. (1993). "The Optical and Electronic Properties of Semiconducting Diamond". Philosophical Transactions of the Royal Society A 342: 233–244. doi:10.1098/rsta.1993.0017.  
  22. ^ Landstrass, M.I.; Ravi, K.V. (1989). "Resistivity of chemical vapor deposited diamond films". Applied Physics Letters 55: 975–977. doi:10.1063/1.101694.  
  23. ^ Zhang, W.; Ristein, J.; Ley, L. (2008). "Hydrogen-terminated diamond electrodes. II. Redox activity". Physical Review E 78: 041603. doi:10.1103/PhysRevE.78.041603.  
  24. ^ Collins, A.T. (1998). "Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catalyst". Diamond and Related Materials 7: 333–338. doi:10.1016/S0925-9635(97)00270-7.  
  25. ^ Zaitsev, A. M. (2000). "Vibronic spectra of impurity-related optical centers in diamond". Physical Review B 61: 12909. doi:10.1103/PhysRevB.61.12909.  
  26. ^ Hounsome, L.S.; Jones, R.; Shaw, M. J.; Briddon, P. R.; Öberg, S. (2006). "Origin of brown coloration in diamond". Physical Review B 73: 125203. doi:10.1103/PhysRevB.73.125203.  
  27. ^ Wise, R.W. (2001). Secrets Of The Gem Trade, The Connoisseur's Guide To Precious Gemstones. Brunswick House Press. pp. 223–224. ISBN 9780972822381.  
  28. ^ Khan, U. "Blue-grey diamond belonging to King of Spain has sold for record 16.3 GBP". The Telegraph. http://www.telegraph.co.uk/culture/3703861/Blue-grey-diamond-belonging-to-King-of-Spain-has-sold-for-record-16.3m.html.  
  29. ^ Nebehay, S. (2009-05-12). "Rare blue diamond sells for record $9.5 million". Reuters. http://www.reuters.com/article/artsNews/idUSTRE54B6O020090512. Retrieved 2009-05-13.  
  30. ^ Pomfret, James (December 1, 2009). ""Vivid pink" diamond sells for record $10.8 million". Reuters. http://news.yahoo.com/s/nm/20091201/lf_nm_life/us_hongkong_diamond.  
  31. ^ Hazen, R. M (1999). The diamond makers. Cambridge University Press. p. 7. ISBN 0521654742. http://books.google.com/books?id=fNJQok6N9_MC&pg=PA7.  
  32. ^ O'Donoghue, M. (1997). Synthetic, Imitation and Treated Gemstones. Gulf Professional Publishing. pp. 34–37. ISBN 0750631732. http://books.google.com/books?id=Jm3FwBiHaI4C&pg=PA37.  
  33. ^ a b Carlson, R.W. (2005). The Mantle and Core. Elsevier. p. 248. ISBN 0080448488. http://books.google.com/books?id=1clZ4ABsfoAC&pg=PA248.  
  34. ^ a b c d e f g h i j k Erlich, E.I.; Dan Hausel, W. (2002). Diamond Deposits. Society for Mining, Metallurgy, and Exploration. pp. 74–94. ISBN 0873352130. http://books.google.com/books?id=068-M3xrDSQC&printsec=frontcover.  
  35. ^ Webster, R.; Read, P.G. (2000). Gems: Their sources, descriptions and identification (5th ed.). Great Britain: Butterworth-Heinemann. p. 17. ISBN 0-7506-1674-1.  
  36. ^ Garai, J.; Haggerty, S.E.; Rekhi, S.; Chance, M. (2006). "Infrared Absorption Investigations Confirm the Extraterrestrial Origin of Carbonado Diamonds". Astrophysical Journal 653 (2): L153–L156. doi:10.1086/510451.  
  37. ^ "Diamonds from Outer Space: Geologists Discover Origin of Earth's Mysterious Black Diamonds". National Science Foundation. 2007-01-08. http://www.nsf.gov/news/news_summ.jsp?cntn_id=108270&org=NSF. Retrieved 2007-10-28.  
  38. ^ "This Valentine's Day, Give The Woman Who Has Everything The Galaxy's Largest Diamond". Center for Astrophysics. http://cfa-www.harvard.edu/press/archive/pr0407.html. Retrieved 2009-05-05.  
  39. ^ Cauchi, S. (2004-02-18). "Biggest Diamond Out of This World". The Age. http://www.theage.com.au/articles/2004/02/17/1076779973101.html. Retrieved 2007-11-11.  
  40. ^ a b Yarnell, A. (2004). "The Many Facets of Man-Made Diamonds". Chemical and Engineering News 82 (5): 26–31. http://pubs.acs.org/cen/coverstory/8205/8205diamonds.html.  
  41. ^ a b c "Industrial Diamonds Statistics and Information". United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/diamond/. Retrieved 2009-05-05.  
  42. ^ a b "Conflict Diamonds". United Nations. 2001-03-21. http://www.un.org/peace/africa/Diamond.html. Retrieved 2009-05-05.  
  43. ^ a b Pierson,Hugh O (1993). Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. William Andrew. p. 280. ISBN 0815513399. http://books.google.com/books?id=jPT6JADCqgwC&pg=PA280.  
  44. ^ Catelle, W.R. (1911). The Diamond. John Lane Company. p. 159.  
  45. ^ Ball, V. (1881). "Chapter 1". Diamonds, Gold and Coal of India. London: Trübner & Co. p. 1.   Ball was a geologist in British service.
  46. ^ Shillington, K. (2005). Encyclopedia of African history. CRC Press. p. 767. ISBN 1579584535. http://books.google.com/books?id=Ftz_gtO-pngC&pg=PA767.  
  47. ^ a b Janse, A.J.A. (2007). "Global Rough Diamond Production Since 1870". Gems & Gemology 43: 98–119.  
  48. ^ a b Lorenz, V. (2007). "Argyle in Western Australia: The world's richest diamantiferous pipe; its past and future". Gemmologie, Zeitschrift der Deutschen Gemmologischen Gesellschaft 56 (1–2): 35–40.  
  49. ^ a b "Microscopic diamond found in Montana". The Montana Standard. http://www.montanastandard.com/articles/2004/10/18/featuresbusiness/hjjfijicjbhdjc.txt. Retrieved 2009-05-05.  
  50. ^ "Apex Geoscience Completes Bulk Sampling, Submits Samples for Laboratory Testing". Delta Mining. 2008. http://www.deltamine.com/release2008-01-08.htm. Retrieved 2008-11-03.  
  51. ^ Marshall, S.; Shore, J. (2004). "The Diamond Life". Guerrilla News Network. http://gnn.tv/videos/2/The_Diamond_Life. Retrieved 2007-03-21.  
  52. ^ a b Basedau, M.; Mehler, A (2005). Resource politics in Sub-Saharan Africa. GIGA-Hamburg. pp. 305–313. ISBN 3928049917. http://books.google.com/books?id=hWrEcl2ydzEC&pg=PA305.  
  53. ^ "World Federation of Diamond Bourses (WFDB) and International Diamond Manufacturers Association: Joint Resolution of 19 July 2000". World Diamond Council. 2000-07-19. http://books.google.ca/books?id=fnRnyS7I9cYC&pg=PA334&lpg=PA334. Retrieved 2006-11-05.  
  54. ^ "Voluntary Code of Conduct For Authenticating Canadian Diamond Claims" (PDF). Canadian Diamond Code Committee. 2006. http://www.cb-bc.gc.ca/eic/site/cb-bc.nsf/vwapj/Code_EN_Jan_06_FINAL.pdf/$file/Code_EN_Jan_06_FINAL.pdf. Retrieved 2007-10-30.  
  55. ^ Kjarsgaard, B.A.; Levinson, A.A. (2002). "Diamonds in Canada". Gems and Gemology 38 (3): 208–238.  
  56. ^ "The Diamond Industry". http://www.photius.com/diamonds/the_diamond_industry.html. Retrieved 2009-07-07.  
  57. ^ Adiga, A. (2004-04-12). "Uncommon Brilliance". Time. http://www.time.com/time/magazine/article/0,9171,501040419-610100,00.html. Retrieved 2008-11-03.  
  58. ^ Mankiw, N. G (1998). Principles of microeconomics. Elsevier. p. 305. ISBN 0030245028. http://books.google.com/books?id=xoztFMavGCcC&pg=PA305. "A classic example of monpoly that arises fron ownership of a key resource is DeBeers ... which controls about 80 percent of the world's production of diamonds"  
  59. ^ "Jwaneng". De Beers. http://www.debeersgroup.com/Exploration-and-mining/Mining-operations/Jwaneng/. Retrieved 2009-04-26.  
  60. ^ a b c Tichotsky, J. (2000). Russia's Diamond Colony: The Republic of Sakha. Routledge. p. 254. ISBN 9057024209. http://books.google.com/books?id=F7N4G_wxkUYC.  
  61. ^ "Commission Decision of 25 July 2001 declaring a concentration to be compatible with the common market and the EEA Agreement". Case No COMP/M.2333 – De Beers/LVMH. EUR-Lex. 2003. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32003D0079:EN:HTML.  
  62. ^ "Business: Changing facets; Diamonds". The Economist 382 (8517): 68. 2007. http://pages.stern.nyu.edu/~lwhite/f&m.assignments.2008/f&m.presentationmaterials/DeBeers/Economist%20Feb-24-2007.pdf.  
  63. ^ "The Elusive Sparcle". The Gem & Jewellery Export Promotion Council. http://www.gjepc.org/solitaire/magazines/Aug05_Sep05/aug05_sep05.aspx?inclpage=Specials&section_id=3. Retrieved 2009-04-26.  
  64. ^ Even-Zohar, C. (2008-11-06). "Crisis Mitigation at De Beers" (PDF). DIB online. http://www.namakwadiamonds.co.za/nd/uploads/wysiwyg/documents/081106_DIB.pdf. Retrieved 2009-04-26.  
  65. ^ Even-Zohar, C. (1999-11-03). "De Beers to Halve Diamond Stockpile". National Jeweler. http://www.allbusiness.com/retail-trade/apparel-accessory-stores-womens-specialty/4224156-1.html. Retrieved 2009-04-26.  
  66. ^ "Judgment of the Court of First Instance of 11 July 2007 – Alrosa v Commission". EUR-Lex. 2007. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2007:199:0037:01:EN:HTML. Retrieved 2009-04-26.  
  67. ^ "Diamond producer Alrosa to resume market diamond sales in May". RIA Novosti. 2009-05-06. http://en.rian.ru/business/20090506/121458087.html. Retrieved 2009-05-25.  
  68. ^ "Another record profit for BHP". ABC News. 2007-08-22. http://www.abc.net.au/news/stories/2007/08/22/2012367.htm. Retrieved 2007-08-23.  
  69. ^ "Our Companies". Rio Tinto web site. Rio Tinto. http://www.riotinto.com/whatweproduce/218_our_companies.asp. Retrieved 2009-03-05.  
  70. ^ a b c Broadman, H. G.; Isik, G (2007). Africa's silk road. World Bank Publications. pp. 297–299. ISBN 0821368354. http://books.google.com/books?id=fkBJ0HL34WsC&pg=PA297.  
  71. ^ "Bourse listing". World Federation of Diamond Bourses. http://www.worldfed.com/website/boursedirectory.html. Retrieved 2007-04-04.  
  72. ^ "North America Diamond Sales Show No Sign of Slowing". A&W diamonds. http://www.awdiamonds.com/article-8.html. Retrieved 2009-05-05.  
  73. ^ George E. Harlow (1998). The nature of diamonds. Cambridge University Press. p. 34. ISBN 0521629357. http://books.google.com/books?id=_WI86J88ydAC&pg=PA34.  
  74. ^ Jessica Elzea Kogel (2006). Industrial minerals & rocks. Society for Mining, Metallurgy, and Exploration (U.S.). p. 416. ISBN 0873352335. http://books.google.com/books?id=zNicdkuulE4C&pg=PA416.  
  75. ^ "The Australian Diamond Industry". http://www.costellos.com.au/diamonds/industry.html. Retrieved 2009-08-04.  
  76. ^ Erlich, Edward and Dan Hausel, W. (2002). Diamond deposits: origin, exploration, and history of discovery. SME. p. 158. ISBN 0873352130. http://books.google.com/books?id=068-M3xrDSQC&pg=PT158.  
  77. ^ a b James, Duncan S (1998). Antique jewellery: its manufacture, materials and design. Osprey Publishing. pp. 82–102. ISBN 0747803854. http://books.google.com/books?id=Y84qRt6nz-8C&pg=PA88.  
  78. ^ Prelas, Mark Antonio; Popovici, Galina; Bigelow,Louis K. (1998). Handbook of industrial diamonds and diamond films. CRC Press. pp. 984–992. ISBN 0824799941. http://books.google.com/books?id=X3qe9jzYUAQC&pg=PA984.  
  79. ^ Popular Mechanics. 74. Hearst Magazines. 1940. pp. 760–764. ISSN 0032-4558. http://books.google.com/books?id=i9kDAAAAMBAJ&pg=PA760.  
  80. ^ a b Spear, K.E; Dismukes, J.P. (1994). Synthetic Diamond: Emerging CVD Science and Technology. WileyIEEE. p. 628. ISBN 0471535893. http://books.google.com/books?id=RR5HF25DB7UC.  
  81. ^ Holtzapffel, C. (1856). Turning And Mechanical Manipulation. Holtzapffel & Co. pp. 176–178. http://books.google.com/books?id=omwPAAAAYAAJ&pg=PA178.  
  82. ^ Coelho, R.T.; Yamada, S.; Aspinwall, D.K.; Wise, M.L.H. (1995). "The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum-based alloys including MMC". International Journal of Machine Tools and Manufacture 35 (5): 761–774. doi:10.1016/0890-6955(95)93044-7.  
  83. ^ Sakamoto, M.; Endriz, J.G.; Scifres, D.R. (1992). "120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink". Electronics Letters 28 (2): 197–199. doi:10.1049/el:19920123.  
  84. ^ Shigley, J.E. (2002). "Gemesis Laboratory Created Diamonds". Gems & Gemology 38 (4): 301–309.  
  85. ^ Shigley, J.E. (2004). "Lab Grown Colored Diamonds from Chatham Created Gems". Gems & Gemology 40 (2): 128–145.  
  86. ^ Werner, M.; Locher, R (1998). "Growth and application of undoped and doped diamond films". Reports on Progress in Physics 61: 1665. doi:10.1088/0034-4885/61/12/002.  
  87. ^ Kogel, J. E. (2006). Industrial Minerals & Rocks. SME. pp. 426–430. ISBN 0873352335. http://books.google.com/books?id=zNicdkuulE4C&pg=PA428.  
  88. ^ O'Donoghue, M.; Joyner, L. (2003). Identification of gemstones. Great Britain: Butterworth-Heinemann. pp. 12–19. ISBN 0750655127.  
  89. ^ Barnard, A. S (2000). The diamond formula. Butterworth-Heinemann. p. 115. ISBN 0750642440. http://books.google.com/books?id=kCc80Q4gzSgC&pg=PA115.  
  90. ^ Shigley, J.E. (2007). "Observations on new coated gemstones". Gemmologie: Zeitschrift der Deutschen Gemmologischen Gesellschaft 56 (1–2): 53–56.  
  91. ^ J. F. Wenckus "Method and means of rapidly distinguishing a simulated diamond from natural diamond" U.S. Patent 4,488,821 December 18, 1984
  92. ^ a b Edwards, H. G. M. and Chalmers, G. M (2005). Raman spectroscopy in archaeology and art history. Royal Society of Chemistry. pp. 387–394. ISBN 0854045228. http://books.google.com/books?id=W2cSkEsWbSkC&pg=PA387.  
  93. ^ a b Welbourn, C. (2006). "Identification of Synthetic Diamonds: Present Status and Future Developments". Gems & Gemology 42 (3): 34–35.  
  94. ^ Donahue, P.J. (2004-04-19). "DTC Appoints GIA Distributor of DiamondSure and DiamondView". Professional Jeweler Magazine. http://www.professionaljeweler.com/archives/news/2004/041904story.html. Retrieved 2009-03-02.  
  95. ^ "SSEF diamond spotter and SSEF illuminator". SSEF Swiss Gemmological Institute. http://dkamhi.com/ssef%20type%20IIa.htm. Retrieved 2009-05-05.  


External links

1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

a mineral universally recognized as chief among precious stones; it is the hardest, the most imperishable, and also the most brilliant of minerals.' These qualities alone have made it supreme as a jewel since early times, and yet the real brilliancy of the stone is not displayed until it has been faceted by the art of the lapidary; and this was scarcely developed before the year 1746. The consummate hardness of the diamond, in spite of its high price, has made it most useful for purposes of grinding, polishing and drilling. Numerous attempts have been made to manufacture the diamond by artificial means, and these attempts have a high scientific interest on account of the mystery which surrounds the natural origin of this remarkable mineral. Its physical and chemical properties have been the subject of much study, and have a special interest in view of the extraordinary difference between the physical characters of the diamond and those of graphite (blacklead) or charcoal, with which it is chemically identical, and into which it can be converted by the action of heat or electricity. Again, on account of the great value of the diamond, much of the romance of precious stones has centred round this mineral; and the history of some of the great diamonds of historic times has been traced through many extraordinary vicissitudes.

The name 'Aba as, " the invincible," was probably applied by the Greeks to hard metals, and thence to corundum (emery) and other hard stones. According to Charles William King, the first undoubted application of the name to the diamond is found in Manilius (A.D. 16), - Sic Adamas, punctum lapidis, pretiosior auro, - and Pliny (A.D. too) speaks of the rarity of the stone, " the most valuable of gems, known only to kings." Pliny described six varieties, among which the Indian, having six pointed angles, and also resembling two pyramids (turbines, whip-tops) placed base to base, may probably be identified as the ordinary octahedral crystal (fig. I). The " diamond " (Yahalom) in the breastplate of the high priest (Ex. xxxix. I I) was certainly some other stone, for it bore the name of a tribe, and methods of engraving the true diamond cannot have been known so early. The stone can hardly have become familiar to the Romans until introduced from India, where it was probably mined at a very early period. But one or other of the remaining varieties mentioned by Pliny (the Macedonian, the Arabian, the Cyprian, &c.) may be the true diamond, which was in great request for the tool of the gem-engraver. Later Roman authors mentioned various rivers in India as yielding the Adamas among their sands. The name Adamas became corrupted into the forms adamant, diamaunt, diamant, diamond; but the same word, owing to a medieval misinterpretation which derived it from adamare (compare the French word aimant), was also applied to the lodestone.

Like all the precious stones, the diamond was credited with many marvellous virtues; among others the power of averting insanity, and of rendering poison harmless; and in the middle ' Diamonds are invariably weighed in carats and in z, 4, a, 1, s, of a carat. One (English) carat =3.17 grains = gram. One ounce =1511 carats. (See Carat.) ages it was known as the " pietra della reconciliazione," as the peacemaker between husband and wife.

Table of contents

Scientific Characters

The majority of minerals are found commonly in masses which can with difficulty be recognized as aggregates of crystalline grains, and occur comparatively seldom as distinct crystals; but the diamond is almost always found in single crystals, which show no signs of previous attachment to any matrix; the stones were, until the discovery of the South African mines, almost entirely derived from sands or gravels, but owing to the hardness of the mineral it is rarely, if ever, water-worn, and the crystals are often very perfect. The crystals belong to the cubic system, generally assuming the form of the octahedron (fig. but they may, in accordance with the principles of crystallography, also occur in other forms symmetrically derived from the octahedron, - for example, the cube, the 2-faced figure known as the rhombic dodecahedron (fig. 2), or the 48-faced figure known as the hexakis-octahedron (fig. 3), m in combinations of these. The octahedron faces are usually smooth; most of the other faces are rounded (fig. 4). The cube FIG. I. FIG. 2. FIG. 3. FIG.

faces are rough with protruding points. The cube is sometimes found in Brazil, but is very rare among the S. African stones; and the dodecahedron is perhaps more common in Brazil than elsewhere. There is often a furrow running along the edges of the octahedron, or across the edges of the cube, and this indicates that the apparently simple crystal may really consist of eight individuals meeting at the centre; or, what comes to the same thing, of two individuals interpenetrating and projecting through each other. If this be so the form of the diamond is really the tetrahedron (and the various figures derived symmetrically from it) and not the octadehron. Fig. 5 shows how the octahedron with furrowed edge may be constructed from two interpenetrating tetrahedra (shown in dotted lines). If the grooves be left out of account, the large faces which have replaced each tetrahedron corner then make up a figure which has the aspect of a simple octahedron. Such regular interpenetrations are known FIG.

in crystallography as " twins." There are also twins of diamond in which two octahedra (fig. 6) are united by contact along a surface parallel to an octahedron face without interpenetration. On account of their resemblance to the twins of the mineral spinel (which crystallizes in octahedra) these are ?i D known as " spinel twins." They are gen erally flattened along the plane of union. ?? o The crystals often display triangular markings, either elevations or pits, upon - ' g ? P ? P the octahedron faces; the latter are particularly well defined and have the form =% of equilateral triangles (fig. 7). They are FIG.

similar to the " etched figures " produced 7' by moistening an octahedron of alum, and have probably been produced, like them, by the action of some solvent. Similar, but somewhat different markings are produced by the combustion of diamond in oxygen, unaccompanied by any rounding of the edges.

Diamond possesses a brilliant " adamantine " lustre, but this tends to be greasy on the surface of the natural stones and gives FIG.

the rounded crystals somewhat the appearance of drops of gum. Absolutely colourless stones are not so common as cloudy and faintly coloured specimens; the usual tints are grey, brown, yellow or white; and as rarities, red, green, blue and black stones have been found. The colour can sometimes be removed or changed at a high temperature, but generally returns on cooling. It is therefore more probably due to metallic oxides than to hydrocarbons. Sir William Crookes has, however, changed a pale yellow diamond to a bluish-green colour by keeping it embedded in radium bromide for eleven weeks. The black coloration upon the surface produced by this process, as also by the electric bombardment in a vacuum tube, appears to be due to a conversion of the surface film into graphite. Diamond may break with a conchoidal fracture, but the crystals always cleave readily along planes parallel to the octahedron faces: of this property the diamond cutters avail themselves when reducing the stone to the most convenient form for cutting; a sawing process, has, however, now been introduced, which is preferable to that of cleavage. It is the hardest known substance (though tantalum, or an alloy of tantalum now competes with it) and is chosen as io in the mineralogist's scale of hardness; but the difference in hardness between diamond (io) and corundum (9) is really greater than that between corundum (9) and talc (1); there is a difference in the hardness of the different faces; the Borneo stones are also said to be harder than those of Australia, and the Australian harder than the African, but this is by no means certain. The specific gravity ranges from 3.56 to 3.50, generally about 3.52. The coefficient of expansion increases very rapidly above 750°, and diminishes very rapidly at low temperatures; the maximum density is attained about - 42° C.

The very high refractive power (index = 2.417 for sodium light) gives the stone its extraordinary brilliancy; for light incident within a diamond at a greater angle than 241° is reflected back into the stone instead of passing through it; the corresponding angle for glass is 401°. The very high dispersion (index for red light = 2.402, for blue light = 2.460) gives it the wonderful " fire " or display of spectral colours. Certain absorption bands at the blue end of the spectrum are supposed to be due to rare elements such as samarium. Unlike other cubic crystals, diamond experiences a diminution of refractive index with increase of temperature. It is very transparent for Röntgen rays, whereas paste imitations are opaque. It is a good conductor of heat, and therefore feels colder to the touch than glass and imitation stones. The diamond has also a somewhat greasy feel. The specific heat increases rapidly with rising temperature up to 60° C., and then more slowly. Crystals belonging to the cubic system should not be birefringent unless strained; diamond often displays double refraction particularly in the neighbourhood of inclusions, both liquid and solid; this is probably due to strain, and the spontaneous explosion of diamonds has often been observed. Diamond differs from graphite in being a bad conductor of electricity: it becomes positively electrified by friction. The electrical resistance is about that of ordinary glass, and is diminished by one-half during exposure by Röntgen rays; the dielectric constant (16) is greater than that which should correspond to the specific gravity.

The phosphorescence produced by friction has been known since the time of Robert Boyle (1663); the diamond becomes luminous in a dark room after exposure to sunlight or in the presence of radium; and many stones phosphoresce beautifully (generally with a pale green light) when subjected to the electric discharge in a vacuum tube. Some diamonds are more phosphorescent than others, and different faces of a crystal may display different tints. The combustibility of the diamond was predicted by Sir Isaac Newton on account of its high refractive power; it was first established experimentally by the Florentine Academicians in 1694. In oxygen or air diamond burns at about 850°, and only continues to do so if maintained at a high temperature; but in the absence of oxidising agents it may be raised to a much higher temperature. It is, however, infusible at the temperature of the electric arc, but becomes converted superficially into graphite. Experiments on the combustion of diamond were made by Smithson Tennant (1797) and Sir Humphry Davy (1816), with the object of proving that it is pure carbon; they showed that burnt in oxygen it yields exactly the same amount of carbon dioxide as that produced by burning the same weight of carbon. Still more convincing experiments were made by A. Krause in 1890. Similarly Guyton de Morveau showed that, like charcoal, diamond converts soft iron into steel. Diamond is insoluble in acid and alkalis, but is oxidised on heating with potassium bichromate and sulphuric acid.

Bort (or Boart) is the name given to impure crystals or fragments useless for jewels; it is also applied to the rounded crystalline aggregates, which generally have a grey colour, a rough surface, often a radial structure, and are devoid of good cleavage. They are sometimes spherical (" shot bort "). Carbonado or " black diamond," found in Bahia (also recently in Minas Geraes), is a black material with a minutely crystalline structure somewhat porous, opaque, resembling charcoal in appearance, devoid of cleavage, rather harder than diamond, but of less specific gravity; it sometimes displays a rude cubic crystalline form. The largest specimen found (1895) weighed 3078 carats. Both bort and carbonado seem to be really aggregates of crystallized diamond, but the carbonado is so nearly structureless that it was till recently regarded as an amorphous modification of carbon.

Uses of the Diamond

The use of the diamond for other purposes than jewelry depends upon its extreme hardness: it has always been the only material used for cutting or engraving the diamond itself. The employment of powdered bort and the lapidary's wheel for faceting diamonds was introduced by L. von Berquen of Bruges in 1476. Diamonds are now employed not only for faceting precious stones, but also for cutting and drilling glass, porcelain, &c,; for fine engraving such as scales; in dentistry for drilling; as a turning tool for electric-light carbons, hard rubber, &c.; and occasionally for finishing accurate turning work such as the axle of a transit instrument. For these tools the stone is actually shaped to the best form: it is now electroplated before being set in its metal mount in order to secure a firm fastening. It is also used for bearings in watches and electric meters. The best glaziers' diamonds are chosen from crystals such that a natural curved edge can be used. For rock drills, and revolving saws for stone cutting, either diamond, bort or carbonado is employed, set in steel tubes, disks or bands. Rock drilling is the most important industrial application; and for this, owing to its freedom from cleavage, the carbonado is more highly prized than diamond; it is broken into fragments about 3 carats in weight; and in 1905 the value of carbonado was no less than from £10 to £14 a carat. It has been found that the " carbons " in drills can safely be subjected to a pressure of over 60 kilograms per square millimetre, and a speed of 25 metres per second. A recent application of the diamond is for wire drawing; a hole tapering towards the centre is drilled through a diamond, and the metal is drawn through this. No other tool is so endurable, or gives such uniform thickness of wire.

Distribution and Mining

The most important localities for diamonds have been: (1) India, where they were mined from the earliest times till the close of the 19th century; (2) South America, where they have been mined since the middle of the 18th century; and (3) South Africa, to which almost the whole of the diamond-mining industry has been transferred since 1870.


The diamond is here found in ancient sandstones and conglomerates, and in the river gravels and sands derived from them. The sandstones and conglomerates belong to the Vindhyan formation and overlie the old crystalline rocks: the diamantiferous beds are well defined, often not more than 1 ft. in thickness, and contain pebbles of quartzite, jasper, sandstone, slate, &c. The mines fall into five groups situated on the eastern side of the Deccan plateau about the following places (beginning from the south), the first three being in Madras. (1) Chennur near Cuddapah on the river Pennar. (2) Kurnool near Baneganapalle between the rivers Pennar and Kistna. (3) Kollar near Bezwada on the river Kistna. (4) Sambalpur on the river Mahanadi in the Central Provinces. (5) Panna near Allahabad, in Bundelkhand. The mining has always been carried on by natives of low caste, and by primitive methods which do not differ much from those described by the French merchant Jean Baptiste Tavernier (1605-1689), who paid a prolonged visit to most of the mines between 1638 and 1665 as a dealer in precious stones. According to his description shallow pits were sunk, and the gravel excavated was gathered into a walled enclosure where it was crushed and water was poured over it, and it was finally sifted in baskets and sorted by hand. The buying and selling was at that period conducted by young children. In more modern times there has been the same excavation of shallow pits, and sluicing, sifting and sorting, by hand labour, the only machinery used being chain pumps made of earthen bowls to remove the water from the deeper pits.

At some of the Indian localities spasmodic mining has been carried on at different periods for centuries, at some the work which had been long abandoned was revived in recent times, at others it has long been abandoned altogether. Many of the large stones of antiquity were probably found in the Kollar group, where Tavernier found 60,000 workers in 1645 (?), the mines having, according to native accounts, been discovered about loo years previously. Golconda was the fortress and the market for the diamond industry at this group of mines, and so gave its name to them. The old mines have now been completely abandoned, but in 1891 about moo carats were being raised annually in the neighbourhood of Hyderabad. The Sambalpur group appear to have been the most ancient mines of all, but they were not worked later than 1850. The Panna group were the most productive during the 19th century. India was no doubt the source of all the large stones of antiquity; a stone of 67* carats was found at Wajra Karur in the Chennur group in 1881, and one of 2102 carats at Hira Khund in 1809. Other Indian localities besides those mentioned above are Simla, in the N.W. Provinces, where a few stones have been found, and a district on the Gouel and the Sunk rivers in Bengal, which V. Ball has identified with the Soumelpour mentioned by Tavernier. The mines of Golconda and Kurnool were described as early as 1677 in the twelfth volume of the Philosophical Transactions of the Royal Society. At the present time very few Indian diamonds find their way out of the country, and, so far as the world's supply is concerned, Indian mining of diamonds may be considered extinct. The first blow to this industry was the discovery of the Brazilian mines in Minas Geraes and Bahia.


Diamonds were found about 1725 at Tejuco (now Diamantina) in Minas Geraes, and the mining became important about 1740. The chief districts in Minas Geraes are (1) Bagagem on the W. side of the Serra da Mata da Corda; (2) Rio Abaete on the E. side of the same range; these two districts being among the head waters of the Rio de San Francisco and its tributaries; (3) Diamantina, on and about the watershed separating the Rio de San Francisco from the Rio Jequitinhonha; and (4) Grao Mogul, nearly 200 m. to the N.E. of Diamantina on the latter river.

The Rio Abaete district was worked on a considerable scale between 1785 and 1807, but is now abandoned. Diamantina is at present the most important district; it occupies a mountainous plateau, and the diamonds are found both on the plateau and in the river valleys below it. The mountains consist here of an ancient laminated micaceous quartzite, which is in parts a flexible sandstone known as itacolumite, and in parts a conglomerate; it is interbedded with clay-slate, mica-schist, hornblende-schist and haematite-schist, and intersected by veins of quartz. This series is overlain unconformably by a younger quartzite of similar character, and itself rests upon the crystalline schists. The diamond is found under three conditions: (1) in the gravels of the present rivers, embedded in a ferruginous claycemented conglomerate known as cascalho; (2) in terraces (gupiarras) in a similar conglomerate occupying higher levels in the present valleys; (3) in plateau deposits in a coarse surface conglomerate known as gurgulho, the diamond and other heavy minerals being embedded in the red clay which cements the larger blocks. Under all these three conditions the diamond is associated with fragments of the rocks of the country and the minerals derived from them, 'especially quartz, hornstone, jasper, the polymorphous oxide of titanium (rutile, anatase and brookite), oxides and hydrates of iron (magnetite, ilmenite, haematite, limonite), oxide of tin, iron pyrites, tourmaline, garnet, xenotime, monazite, kyanite, diaspore, sphene, topaz, and several phosphates, and also gold. Since the heavy minerals of the cascalho in the river beds are more worn than those of the terraces, it is highly probable that they have been derived by the cutting down of the older river gravels represented by the terraces; and since in both deposits the heavy minerals are more abundant near the heads of the valleys in the plateau, it is also highly probable that both have really been derived from the plateau deposit. In the latter, especially at Sao Joao da Chapada, the minerals accompanying the diamond are scarcely worn at all; in the terraces and the river beds they are more worn and more abundant; the terraces, therefore, are to be regarded as a first concentration of the plateau material by the old rivers; and the cascalho as a second concentration by the modern rivers. The mining is carried on by negroes under the supervision of overseers; the cascalho is dug out in the dry season and removed to a higher level, and is afterwards washed out by hand in running water in shallow wooden basins (bateas). The terraces can be worked at all seasons, and the material is partly washed out by leading streams on to it. The washing of the plateau material is effected in reservoirs of rain water.

It is difficult to obtain an estimate of the actual production of the Minas Geraes mines, for no official returns have been published, but in recent years it has certainly been rivalled by the yield in Bahia. The diamond here occurs in river gravels and sands associated with the same minerals as in Minas Geraes; since 1844 the richest mines have been worked in the Serra de Cincora, where the mountains are intersected by the river Paraguassu and its tributaries; it is said that there were as many as 20,000 miners working here in 1845, and it was estimated that 54,000 carats were produced in Bahia in 1858. The earlier workings were in the Serra de Chapada to the N.W. of the mines just mentioned. In 1901 there were about 5000 negroes employed in the Bahia mines; methods were still primitive; the cascalho was dug out from the river beds or tunnelled out from the valley side, and washed once a week in sluices of running water, where it was turned over with the hoe, and finally washed in wooden basins and picked over by hand; sometimes also the diamantiferous material is scooped out of the bed of the shallow rivers by divers, and by men working under water in caissons. It is almost exclusively in the mines of Bahia, and in particular in the Cincora district, that the valuable carbonado is found. The carbonado and the diamond have been traced to an extensive hard conglomerate which occurs in the middle of the sandstone formation. Diamonds are also mined at Salobro on the river Pardo not far inland from the port of Canavieras in the S.E. corner of Bahia. The enormous development of the South Africanmines,whichsuppliedin 1906, about90%of the world's produce, has thrown into the shade the Brazilian production; but the Bulletin for Feb. 1909 of the International Bureau of American Republics gave a very confident account of its future, under improved methods.

South Africa

The first discovery was made in 1867 by Dr W. G. Atherstone, who identified as diamond a pebble obtained from a child in a farm on the banks of the Orange river and brought by a trader to Grahamstown; it was bought for £500 and displayed in the Paris Exhibition of that year. In 1869 a stone weighing 83* carats was found near the Orange river; this was purchased by the earl of Dudley for £25,000 and became famous as the " Star of South Africa." A rush of prospectors at once took place to the banks of the Orange and Vaal rivers, and resulted in considerable discoveries, so that in 1870 there was a mining camp of no less than 10,000 persons on the " River Diggings." In the River Diggings the mining was carried on in the coarse river gravels, and by the methods of the Brazilian negroes and of gold placer-miners. A diggers' committee limited the size of claims to 30 ft. square, with free access to the river bank; the gravel and sand were washed in cradles provided with screens of perforated metal, and the concentrates were sorted by hand on tables by means of an iron scraper.

But towards the close of 1870 stones were found at Jagersfontein and at Dutoitspan, far from the Vaal river, and led to a second great rush of prospectors, especially to Dutoitspan, and in 1871 to what is now the Kimberley mine in the neighbourhood of the latter. At each of these spots the diamantiferous area was a roughly circular patch of considerable size, and in some occupied the position of one of those depressions or " pans " so frequent in S. Africa. These " dry diggings " were therefore at first supposed to be alluvial in origin like the river gravels; but it was soon discovered that, below the red surface soil and the underlying calcareous deposit, diamonds were also found in a layer of yellowish clay about 50 ft. thick known as " yellow ground." Below this again was a hard bluish-green serpentinous rock which was at first supposed to be barren bed-rock; but this also contained the precious stone, and has become famous, under the name of " blue ground," as the matrix of the S. African diamonds. The yellow ground is merely decomposed blue ground. In the Kimberley district five of these round patches of blue ground were found within an area little more than 3 m. in diameter; that at Kimberley occupying 10 acres, that at Dutoitspan 23 acres. There were soon 50,000 workers on this field, the canvas camp was replaced by a town of brick and iron surrounded by the wooden huts of the natives, and Kimberley became an important centre.

It was soon found that each mine was in reality a huge vertical funnel or crater descending to an unknown depth, and filled with diamantiferous blue ground. At first each claim was an independent pit 31 ft. square sunk into the blue ground; the diamantiferous rock was hoisted by bucket and windlass, and roadways were left across the pit to provide access to the claims. But the roadways soon fell in, and ultimately haulage from the claims could only be provided by means of a vast system of wire ropes extending from a triple staging of windlasses erected round the entire edge of the mine, which had by this time become a huge open pit; the ropes from the upper windlasses extended to the centre, and those from the lower tier to the sides of the pit; covering the whole mass like a gigantic cobweb. (See Plate II. fig. 12.) The buckets of blue ground were hauled up these ropes by means of horse whims, and in 1875 steam winding engines began to be employed. By this time also improved methods in the treatment of the blue ground were introduced. It was carried off in carts to open spaces, where an exposure of some weeks to the air was found to pulverize the hard rock far more efficiently than the old method of crushing with mallets. The placer-miner's cradle and rocking-trough were replaced by puddling troughs stirred by a revolving comb worked by horse power; reservoirs were constructed for the scanty water-supply, bucket elevators were introduced to carry away the tailings; and the natives were confined in compounds. For these improvements co-operation was necessary; the better claims, which in 1872 had risen from £100 to more than £4000 in value, began to be consolidated, and a Mining Board was introduced.

NIC?. io. - liIMBE1:1.L.i Mine, 1874.

FIG, 9. - DE Beers Mine, 1874.

FIG. 11. - DE Beers Mine, 1873. (From photographs by C. Evans.) FIG. 12. - KIM Berley Mine, 1874.

FIG. 13. - Kimberley Mine, 1902. (From Photographs by C. Evans.) In a very few years, however, the open pit mining was rendered impossible by the mud rushes, by the falls of the masses of barren rock known as " reef," which were left standing in the mine, and by landslips from the sides, so that in 1883, when the pit had reached a depth of about 400 ft., mining in the Kimberley crater had become almost impossible. By 1889, in the whole group of mines, Kimberley, Dutoitspan, De Beers and Bultfontein, open pit working was practically abandoned. Meanwhile mining below the bottom of the pits by means of shalts and underground tunnels had been commenced; but the full development of modern methods dates from the year 1889 when Cecil Rhodes and Alfred Beit, who had already secured control of the De Beers mine, acquired also the control of the Kimberley mine, and shortly afterwards consolidated the entire group in the hands of the De Beers Company. (See Kimberley.) The scene of native mining was now transferred from the open pit to underground tunnels; the vast network of wire ropes (Plate II. fig. 12) with their ascending and descending buckets disappeared, and with it the cosmopolitan crowd of busy miners working like ants at the bottom of the pit. In place of all this, the visitor to Kimberley encounters at the edge of the town only a huge crater, silent and apparently deserted, with no visible sign of the great mining operations which are conducted nearly half a mile below the surface. The aspect of the Kimberley pit in 1906 is shown in fig. 13 of Plate II., which may be compared with the section of fig. 8.

In fig. 13, Plate I I., the sequence of the basalt, shale and melaphyre is clearly visible on the sides of the pit; and fig. 8 shows how the crater of " pipe " of blue ground has penetrated these rocks and also the underlying quartzite. The workings at De Beers had extended into the still more deeply seated granite in 1906. Figure 9, Plate I., shows the top of the De Beers' crater with basalt overlying the shale. Figure 8 also explains the modern system of mining introduced by Gardner Williams. A vertical shaft is sunk in the vicinity of the mine, and from this horizontal tunnels are driven into the pipe at different levels separated by intervals of 40 ft. Through the blue ground itself on each level a series of parallel tunnels about 120 ft. apart are driven to the opposite side of the pipe, and at right angles to these, and 36 ft. apart, another series of tunnels. When the tunnels reach the side of the mine they are opened upwards and sideways so as to form a large chamber, and the overlying mass of blue ground and debris is allowed to settle down and fill up the gallery. On each level this process is carried somewhat farther back than on the level below (fig. 8); material is thus continually withdrawn from one side of the mine and extracted by means of the rock shaft on the opposite side, while the superincumbent debris is continually sinking, and is allowed to fall deeper on the side farthest from the shaft as the blue ground is withdrawn from beneath it. In 1905 the main shaft had been sunk to a depth of 2600 ft. at the Kimberley mine.

For the extraction and treatment of the blue ground the De Beers Company in its great winding and washing plant employs labour-saving machinery on a gigantic scale. The ground is transferred in trucks to the shaft where it is automatically tipped into skips holding 96 cubic ft. (six truck loads); these are rapidly hoisted to the surface, where their contents are automatically dumped into side-tipping trucks, and these in turn are drawn away in a continual procession by an endless wire rope along the tram lines leading to the vast " distributing floors." These are open tracts upon which the blue ground is spread out and left exposed to sun and rain until it crumbles and disintegrates, the process being hastened by harrowing with steam ploughs; this may require a period of three or six months, or even a year. The stock of blue ground on the floors at one time in 1905 was nearly 4,500,000 loads. The disintegrated ground is then brought back in the trucks and fed through perforated cylinders into the washing pans; the hard blue which has resisted disintegration on the floors, and the lumps which are too big to pass the cylindrical sieves, are crushed before going to the pans. These are shallow cylindrical troughs containing muddy water in which the diamonds and other heavy minerals (concentrates) are swept to the rim by revolving toothed arms, while the lighter stuff escapes near the centre of the pan. The concentrates are then passed over sloping tables (pulsator) and shaken to and fro under a stream of water which effects a second concentration of the heaviest material.

Until recently the final separation of the diamond from the concentrates was made by hand picking, but even this has now been replaced by machinery, owing to the remarkable discovery that a greased surface will hold a diamond while allowing the other heavy minerals to pass over it. The concentrates are washed down a sloping table of corrugated iron which is smeared with grease, and it is found that practically all the diamonds adhere to the table, and the other minerals are washed away. At the large and important Premier mine in the Transvaal the Elmore process, used in British Columbia and in Wales for the separation of metallic ores, has been also introduced. In the Elmore process oil is employed to float off the materials which adhere to it, while the other materials remain in the water, the oil being separated from the water by centrifugal action. The other minerals found in the concentrates are pebbles and fragments of pyrope, zircon, cyanite, chrome-diopside, enstatite, a green pyroxene, mica, ilmenite, magnetite, chromite, hornblende, olivine, barytes, calcite and pyrites.

In all the S. African mines the diamonds are not only crystals of various weights from fractions of a carat to 150 carats, but also occur as microscopic crystals disseminated through the blue ground. In spite of this, however, the average yield in the profitable mines is only from 0.2 carat to o 6 carat per load of 1600 lb, or on an average about IIgrs. per ton. The annual output of diamonds from the De Beers mines was valued in 1906 at nearly £5,000,00o; the value per carat ranging from about 35s. to 70s.

Pipes similar to those which surround Kimberley have been found in other parts of S. Africa. One of the best known is that of Jagersfontein, which was really the first of the dry diggings (discovered in 1870). This large mine is near Fauresmith and 80 m. to the south of Kimberley. In 1905 the year's production from the Orange River Colony mines was more than 320,000 carats, valued at £938,000. But by far the largest of all the pipes hitherto discovered is the Premier Section Or Kimberley Mine mine in the Transvaal, about 300 m. to the east of Kimberley. This was discovered in 1902 and occupies an area of about 15 acres. In 1906 it was being worked as a shallow open mine; but the description of the Kimberley methods given above is applicable to the washing plant at that time being introduced into the Premier mine upona very large scale. Comparatively few of the pipes which have been discovered are at all rich in diamonds, and many are quite barren; some are filled with " hard blue " which even if diamantiferous may be too expensive to work.

The most competent S. African geologists believe all these remarkable pipes to be connected with volcanic outbursts which occurred over the whole of S. Africa during the Cretaceous period (after the deposition of the Stormberg beds), and drilled these enormous craters through all the later formations. With the true pipes are associated dykes and fissures also filled with diamantiferous blue ground. It is only in the more northerly part of the country that the pipes are filled with blue ground (or " kimberlite "), and that they are diamantiferous; but over a great part of Cape Colony have been discovered what are probably similar pipes filled with agglomerates, breccias and tuffs, and some with basic lavas; one, in particular, in the Riversdale Division near the southern coast, being occupied by a melilite-basalt. It is quite clear that the occurrence of the diamond in the S. African pipes is quite different from the occurrences in alluvial deposits which have been described above. The question of the origin of the diamond in S. Africa and elsewhere is discussed below.

The River Diggings on the Vaal river are still worked upon a small scale, but the production from this source is so limited that they are of little account in comparison with the mines in the blue ground. The stones, however, are good; since they differ somewhat from the Kimberley crystals it is probable that they were not derived from the present pipes. Another S. African locality must be mentioned.; considerable finds were reported in 1905 and 1906 from gravels at Somabula near Gwelo in Rhodesia where the diamond is associated with chrysoberyl, corundum (both sapphire and ruby), topaz, garnet, ilmenite, staurolite, rutile, with pebbles of quartz, granite, vIII. 6 From Gardner Williams's FIG. 8.

chlorite-schist, &c. Diamond has also been reported from kimberlite " pipes " in Rhodesia.

Other Localities

In addition to the South American localities mentioned above, small diamonds have also been mined since their discovery in 1890 on the river Mazaruni in British Guiana, and finds have been reported in the gold washings of Dutch Guiana. Borneo has possessed a diamond industry since the island was first settled by the Malays; the references in the works of Garcia de Orta, Linschoten, De Boot, De Laet and others, to Malacca as a locality relate to Borneo. The large Borneo stone, over 360 carats in weight, known as the Matan, is in all probability not a diamond. The chief mines are situated on the river Kapnas in the west and near Bandjarmassin in the south-east of the island, and the alluvial deposits in which they occur are worked by a small number of Chinese and Malays. Australia has yielded diamonds in alluvial deposits near Bathurst (where the first discovery was made in 1851) and Mudgee in New South Wales, and also near Bingara and Inverell in the north of the colony. At Mount Werong a stone weighing 29 carats was found in 1905. At Ruby Hill near Bingara they were found in a breccia filling a volcanic pipe. At Ballina, in New England, diamonds have been found in the sea sand. Other Australian localities are Echunga in South Australia; Beechworth, Arena and Melbourne in Victoria; Freemantle and Nullagine in Western Australia; the Palmer and Gilbert rivers in Queensland. These have been for the most part discoveries in alluvial deposits of the goldfields, and the stones were small. In Tasmania also diamonds have been found in the Corinna goldfields. Europe has produced few diamonds. Humboldt searched for them in the Urals on account of the similarity of the gold and platinum deposits to those of Brazil, and small diamonds were ultimately found (1829) in the gold washings of Bissersk, and later at Ekaterinburg and other spots in the Urals. In Lapland they have been found in the sands of the Pasevig river. Siberia has yielded isolated diamonds from the gold washings of Yenisei. In North America a few small stones have been found in alluvial deposits, mostly auriferous, in Georgia, N. and S. Carolina, Kentucky, Virginia, Tennessee, Wisconsin, California, Oregon and Indiana. A crystal weighing 23* carats was found in Virginia in 1855, and one of 214 carats in Wisconsin in 1886. In 1906 a number of small diamonds were discovered in an altered peridotite somewhat resembling the S. African blue ground, at Murfreesboro, Pike county, Arkansas. Considerable interest attaches to the diamonds found in Wisconsin, Michigan and Ohio near the Great Lakes, for they are here found in the terminal moraines of the great glacial sheet which is supposed to have spread southwards from the region of Hudson Bay; several of the drift minerals of the diamantiferous region of Indiana have been identified as probably of Canadian origin; no diamonds have however yet been found in the intervening country of Ontario. A rock similar to the blue ground of Kimberley has been found in the states of Kentucky and New York. The occurrence of diamond in meteorites is described below.

Origin of the Diamond in Nature

It appears from the foregoing account that at most localities the diamond is found in alluvial deposits probably far from the place where it originated. The minerals associated with it do not afford much clue to the original conditions; they are mostly heavy minerals derived from the neighbouring rocks, in which the diamond itself has not been observed. Among the commonest associates of the diamond are quartz, topaz, tourmaline, rutile, zircon, magnetite, garnet, spinel and other minerals which are common accessory constituents of granite, gneiss and the crystalline schists. Gold (also platinum) is a not infrequent associate, but this may only mean that the sands in which the diamond is found have been searched because they were known to be auriferous; also that both gold and diamond are among the most durable of minerals and may have survived from ancient rocks of which other traces have been lost.

The localities at which the diamond has been supposed to occur in its original matrix are the following: - at Wajra Karur, in the Cuddapah district, India, M. Chaper found diamond with corundum in a decomposed red pegmatite vein in gneiss. At Sao Joao da Chapada, in Minas Geraes, diamonds occur in a clay interstratified with the itacolumite, and are accompanied by sharp crystals of rutile and haematite in the neighbourhood of decomposed quartz veins which intersect the itacolumite. It has been suggested that these three minerals were originally formed in the quartz veins. In both these occurrences the evidence is certainly not sufficient to establish the presence of an original matrix. At Inverell in New South Wales a diamond (1906) has been found embedded in a hornblende diabase which is described as a dyke intersecting the granite. Finally there is the remarkable occurrence in the blue ground of the African pipes.

There has been much contirversy concerning the nature and origin of the blue ground itself; and even granted that (as is generally believed) the blue ground is a much serpentinized volcanic breccia consisting originally of an olivine-bronzite-biotite rock (the so-called kimberlite), it contains so many rounded and angular fragments of various rocks and minerals that it is difficult to say which of them may have belonged to the original rock, and whether any were formed in situ, or were brought upfrom below as inclusions. Carvill Lewis believed the blue ground to be true eruptive rock, and the carbon to have been derived from the bituminous shales of which it contains fragments. The Kimberley shales, which are penetrated by the De Beers group of pipes, were, however, certainly not the source of the carbon at the Premier (Transvaal) mine, for at this locality the shales do not exist. The view that the diamond may have crystallized out from solution in its present matrix receives some support from the experiments of W. Luzi, who found that it can be corroded by the solvent action of fused blue ground; from the experiments of J. Friedlander, who obtained diamond by dissolving graphite in fused olivine; and still more from the experiments of R. von Hasslinger and J. Wolff, who have obtained it by dissolving graphite in a fused mixture of silicates having approximately the composition of the blue ground. E. Cohen, who regarded the pipes as of the nature of a mud volcano, and the blue ground as a kimberlite breccia altered by hydrothermal action, thought that the diamond and accompanying minerals had been brought up from deep-seated crystalline schists. Other authors have sought the origin of the diamond in the action of the hydrated magnesian silicates on hydrocarbons derived from bituminous schists, or in the decomposition of metallic carbides.

Of great scientific interest in this connexion is the discovery of small diamonds in certain meteorites, both stones and irons; for example, in the stone which fell at Novo-Urei in Penza, Russia, in 1886, in a stone found at Carcote in Chile, and in the iron found at Canon Diablo in Arizona. Graphitic carbon in cubic form (cliftonite) has also been found in certain meteoric " irons," for example in those from Magura in Szepes county, Hungary, and Youndegin near York in Western Australia. The latter is now generally believed to be altered diamond. The fact that H. Moissan has produced the diamond artificially, by allowing dissolved carbon to crystallize out at a high temperature and pressure from molten iron, coupled with the occurrence in meteoric iron, has led Sir William Crookes and others to conclude that the mineral may have been derived from deep-seated iron containing carbon in solution (see the article GEM, Artificial). Adolf Knop suggested that this may have first yielded hydrocarbons by contact with water, and that from these the crystalline diamond has been formed. The meteoric occurrence has even suggested the fanciful notion that all diamonds were originally derived from meteorites. The meteoric iron of Arizona, some of which contains diamond, is actually found in and about a huge crater which is supposed by some to have been formed by an immense meteorite penetrating the earth's crust.

It is, at any rate, established that carbon can crystallize as diamond from solution in iron, and other metals; and it seems that high temperature and pressure and the absence of oxidizing agents are necessary conditions. The presence of sulphur, nickel, &c., in the iron appears to favour the production of the diamond. On the other hand, the occurrence in meteoric stones, and the experiments mentioned above, show that the diamond may also crystallize from a basic magma, capable of yielding some of the metallic oxides and ferro-magnesian silicates; a magma, therefore, which is not devoid of oxygen. This is still more forcibly suggested by the remarkable eclogite boulder found in the blue ground of the Newlands mine, not far from the Vaal river, and described by T. G. Bonney. The boulder is a crystalline rock consisting of pyroxene (chrome-diopside), garnet, and a little olivine, and is studded with diamond crystals; a portion of it is preserved in the British Museum (Natural History). In another eclogite boulder, diamond was found partly embedded in pyrope. Similar boulders have also been found in the blue ground elsewhere. Specimens of pyrope with attached or embedded diamond had previously been found in the blue ground of the De Beers mines. In the Newlands boulder the diamonds have the appearance of being an original constituent of the eclogite. It seems therefore that a holocrystalline pyroxene-garnet rock may be one source of the diamond found in blue ground. On the other hand many tons of the somewhat similar eclogite in the De Beers mine have been crushed and have not yielded diamond. Further, the ilmenite, which is the most characteristic associate of the diamond in blue ground, and other of the accompanying minerals, may have come from basic rocks of a different nature.

The Inverell occurrence may prove to be another example of diamond crystallized from a basic rock.

In both occurrences, however, there is still the possibility that the eclogite or the basalt is not the original matrix, but may have caught up the already formed diamond from some other matrix. Some regard the eclogite boulders as derived from deep-seated crystalline rocks, others as concretions in the blue ground.

None of the inclusions in the diamond gives any clue to its origin; diamond itself has been found as an inclusion, as have also black specks of some carbonaceous materials. Other black specks have been identified as haematite and ilmenite; gold has also been found; other included minerals recorded are rutile, topaz, quartz, pyrites, apophyllite, and green scales of chlorite (?). Some of these are of very doubtful identification; others (e.g. apophyllite and chlorite) may have been introduced along cracks. Some of the fibrous inclusions were identified by H. R. Gdppert as vegetable structures and were supposed to point to an organic origin, but this view is no longer held. Liquid inclusions, some of which are certainly carbon dioxide, have also been observed.

Finally, then, both experiment and the natural occurrence in rocks and meteorites suggest that diamond may crystallize not only from iron but also from a basic silicate magma, possibly from various rocks consisting of basic silicates. The blue ground of S. Africa may be the result of the serpentinization of several such rocks, and although now both brecciated and serpentinized some of these may have been the original matrix. A circumstance often mentioned in support of this view is the fact that the diamonds in one pipe generally differ somewhat in character from those of another, even though they be near neighbours.


All the famous diamonds of antiquity must have been Indian stones. The first author who described the Indian mines at all fully was the Portuguese, Garcia de Orta (1565), who was physician to the viceroy of Goa. Before that time there were only legendary accounts like that of Sindbad's " Valley of the Diamonds," or the tale of the stones found in the brains of serpents. V. Ball thinks that the former legend originated in the Indian practice of sacrificing cattle to the evil spirits when a new mine is opened; birds of prey would naturally carry off the flesh, and might give rise to the tale of the eagles carrying diamonds adhering to the meat.

The following are some of the most famous diamonds of the world: - A large stone found in the Golconda mines and said to have weighed 787 carats in the rough, before being cut by a Venetian lapidary, was seen in the treasury of Aurangzeb in 1665 by Tavernier, who estimated its weight after cutting as 280 (?) carats, and described it as a rounded rose-cut-stone, tall on one side. The name Great Mogul has been frequently applied to this stone. Tavernier states that it was the famous stone given to Shah Jahan by the emir Jumla. The Orloff, stolen by a French soldier from the eye of an idol in a Brahmin temple, stolen again from him by a ship's captain, was bought by Prince Orloff for £90,000, and given to the empress Catharine II. It weighs 1944 carats, is of a somewhat yellow tinge, and is among the Russian crown jewels. The Koh-i-nor, which was in 1739 in the possession of Nadir Shah, the Persian conqueror, and in 1813 in that of the raja of Lahore, passed into the hands of the East India Company and was by them presented to Queen Victoria in 1850. It then weighed 186carats, but was recut in London by Amsterdam workmen, and now weighs 106416 carats. There has been much discussion concerning the possibility of this stone and the Orloff being both fragments of the Great Mogul. The Mogul Baber in his memoirs (1526) relates how in his conquest of India he captured at Agra the great stone weighing 8 mishkals, or 320 ratis, which may be equivalent to about 187 carats. The Koh-i-nor has been identified by some authors with this stone and by others with the stone seen by Tavernier. Tavernier, however, subsequently described and sketched the diamond which he saw as shaped like a bisected egg, quite different therefore from the Koh-i-nor. Nevil Story Maskelyne has shown reason for believing that the stone which Tavernier saw was really the Koh-i-nor and that it is identical with the great diamond of Baber; and that the 280 carats of Tavernier is a misinterpretation on his part of the Indian weights. He suggests that the other and larger diamond of antiquity which was given to Shah Jahan may be one which is now in the treasury of Teheran, and that this is the true Great Mogul which was confused by Tavernier with the one he saw. (See Ball, Appendix I. to Tavernier's Travels (1889); and Maskelyne, Nature, 18 9 1, 44, p. 555.).

The Regent or Pitt diamond is a magnificent stone found in either India or Borneo; it weighed 410 carats and was bought for £20,400 by Pitt, the governor of Madras; it was subsequently, in 1717, bought for £80,000 (or, according to some authorities, £ 135,000) by the duke of Orleans, regent of France; it was reduced by cutting to '3614 carats; was stolen with the other crown jewels during the Revolution, but was recovered and is still in France. The Akbar Shah was originally a stone of 116 carats with Arabic inscriptions engraved upon it; after being cut down to 71 carats it was bought by the gaikwar of Baroda for £35,000. The Nizam, now in the possession of the nizam of Hyderabad, is supposed to weigh 277 carats; but it is only a portion of a stone which is said to have weighed 440 carats before it was broken. The Great Table, a rectangular stone seen by Tavernier in 1642 at Golconda, was found by him to weigh 242 1 - 3 6 - carats; Maskelyne regards it as identical with the Darya-i-nur, which is also a rectangular stone weighing about 186 carats in the possession of the shah of Persia. Another stone, the Taj-e-mah, belonging to the shah, is a pale rose pear-shaped stone and is said to weigh 146 carats.

Other famous Indian diamonds are the following: - The Sancy, weighing 53 carats, which is said to have been successively the property of Charles the Bold, de Sancy, Queen Elizabeth, Henrietta Maria, Cardinal Mazarin, Louis XIV.; to have been stolen with the Pitt during the French Revolution; and subsequently to have been the property of the king of Spain, Prince Demidoff and an Indian prince. The Nassak, 788 carats, the property of the duke of Westminster. The Empress Eugenie, 51 carats, the property of the gaikwar of Baroda. The Pigott, 49 carats (?), which cannot now be traced. The Pasha, 40 carats. The White Saxon, 48* carats. The Star of Este, 25 3 2 carats.

Coloured Indian diamonds of large size are rare; the most famous are: - a beautiful blue brilliant, 67126 carats, cut from a stone weighing 112 i carats brought to Europe by Tavernier. It was stolen from the French crown jewels with the Regent and was never recovered. The Hope, 444 carats, has the same colour and is probably a portion of the missing stone: it was so-called as forming part of the collection of H. T. Hope bought for £18,000), and was sold again in 1906 (resold 1909). Two other blue diamonds are known, weighing 13* and 14 carats, which may also be portions of the French diamond. The Dresden Green, one of the Saxon crown jewels, 40 carats, has a fine apple-green colour. The Florentine, 1331 carats, one of the Austrian crown jewels, is a very pale yellow.

The most famous Brazilian stones are: - The Star of the South, found in 1853, when it weighed 2542 carats and was sold for £40,000; when cut it weighed 125 carats and was bought by the gaikwar of Baroda for £80,000. Also a diamond belonging to Mr Dresden, 119 carats before, and 762 carats after cutting.

Many large stones have been found in South Africa; some are yellow but some are as colourless as the best Indian or Brazilian stones. The most famous are the following: - the Star of South Africa, or Dudley, mentioned above, 832 carats rough, 462 carats cut. The Stewart, 2888 carats rough, 120 carats cut. Both these were found; in the river diggings. The Porter Rhodes from Kimberley, ` "of the finest water, weighed about 150 carats. The Victoria, 180 carats, was cut from an octahedron weighing 4572 carats, and was sold to the nizam of Hyderabad for £400,000. The Tiffany, a magnificent orange-yellow stone, weighs 1252 carats cut. A yellowish octahedron found at De Beers weighed 4282 carats, and yielded a brilliant of 2882 carats. Some of the finest and largest stones have come from the Jagersfontein mine; one, the Jubilee, found in 1895, weighed 640 carats in the rough and 239 carats when cut. Until 1905 the largest known diamond in the world was the Excelsior, found in 1893 at Jagersfontein by a native while loading a truck. It weighed 971 carats, and was ultimately cut into ten stones weighing from 68 to 13 carats. But all previous records were surpassed in 1905 by a magnificent stone more than three times the size of any known diamond, which was found in the yellow ground at the newly discovered Premier mine in the Transvaal. This extraordinary diamond weighed 30254 carats (13 lb) and was clear and water white; the largest of its surfaces appeared to be a cleavage plane, so that it might be only a portion of a much larger stone. It was known as the Cullinan Diamond. This stone was purchased by the Transvaal government in 1907 and presented to King Edward VII. It was sent to Amsterdam to be cut, and in 1908 was divided into nine large stones and a number of small brilliants. The four largest stones weigh 5162 carats, 309 T % carats, 92 carats and 62 carats respectively. Of these the first and second are the largest brilliants in existence. All the stones are flawless and of the finest quality.

Bibliography. - Boetius de Boot, Gemmarum et lapidum historic (1609); D. Jeffries, A Treatise on Diamonds and Pearls (1757); J. Mawe, Travels in the Interior of Brazil (1812); Treatise on Diamonds and Precious Stones (1813); Finder, De adamante (1829); Murray, Memoir on the Nature of the Diamond (1831); C. Zerenner, De adamante dissertatio (1850); H. Emanuel, Diamonds and Precious Stones (1865); A. Schrauf, Edelsteinkunde (1869); N. Jacobs and N. Chatrian, Monographie du diamant (1880); V. Ball, Geology of India (1881); C. W. King, The Natural History of Precious Stones and Precious Metals (1883); M. E. Boutan, Le Diamant (1886); S. M. Burnham, Precious Stones in Nature, Art and Literature (1887); P. Groth, Grundriss der Edeisteinkunde (1887); A. Liversidge, The Minerals of New South Wales (1888); Tavernier's Travels in India, translated by V. Ball (1889); E. W. Streeter, The Great Diamonds of the World (1896); H. C. Lewis, The Genesis and Matrix of the Diamond (1897); L. de Launay, Les Diamants du Cap (1897); C. Hintze, Handbuch der Mineralogie (1898); E. W. Streeter, Precious Stones and Gems (6th ed., 1898); Dana, System of Mineralogy (1899); Kunz and others, The Production of Precious Stones (in annual, Mineral Resources of the United States); M. Bauer, Precious Stones (trans. L. J. Spencer, 1904); A. W. Rogers, An Introduction to the Geology of Cape Colony (1905); Gardner F. Williams, The Diamond Mines of South Africa (revised edition, 1906); George F. Kunz, " Diamonds, a study of their occurrence in the United States, with descriptions and comparisons of those from all known localities" (U.S. Geol. Survey, 1909); P. A. Wagner, Die Diamantfiihrenden Gesteine Siidafrikas (1909).

Among papers in scientific periodicals may be mentioned articles by Adler, Ball, Baumhauer, Beck, Bonney, Brewster, Chaper, Cohen, Crookes, Daubree, Derby, Des Cloizeaux, Doelter, Dunn, Flight, Friedel, Gorceix, Gurich, Goeppert, Harger, Hudleston, Hussak, Jannettaz, Jeremejew, de Launay, Lewis, Maskelyne, Meunier, Moissan, Molengraaff, Moulle, Rose, Sadebeck, Scheibe, Stelzner, Stow. See generally Hintze's Handbuch der Mineralogie. (H. A. Mi.)

<< Diameter

The Affair Of The Diamond Necklace >>


Up to date as of January 15, 2010

Definition from Wiktionary, a free dictionary

See also diamond


Proper noun




  1. A female given name of modern usage, from the name of the gem.

Bible wiki

Up to date as of January 23, 2010

From BibleWiki

  1. A precious gem (Heb. yahalom', in allusion to its hardness), otherwise unknown, the sixth, i.e., the third in the second row, in the breastplate of the high priest, with the name of Naphtali engraven on it (Ex 28:18; 39:11; R.V. marg., "sardonyx.")
  2. A precious stone (Heb. shamir', a sharp point) mentioned in Jer 17:1. From its hardness it was used for cutting and perforating other minerals. It is rendered "adamant" (q.v.) in Ezek 3:9, Zech 7:12. It is the hardest and most valuable of precious stones.
This entry includes text from Easton's Bible Dictionary, 1897.

what mentions this? (please help by turning references to this page into wiki links)


Up to date as of February 01, 2010
(Redirected to Diamond (surname) article)

From Familypedia

View category for people with the Diamond surname
Wikipedia: Search Wikipedia

The surname Diamond originates from many origins, including Africa, and Israel. If your pigmentation is white and your last name is Diamond, than you are 95% probable of a Jew.

                                 List of Jew names: Goldstein, Blumberg, Einstein, Dickinson, Dick, Dickinstein, Plumonsberg, Auzie, Azenith, Fredricken, Fredenein, Darling, Azenburg
Facts about Diamond (surname)RDF feed

This article uses material from the "Diamond (surname)" article on the Genealogy wiki at Wikia and is licensed under the Creative Commons Attribution-Share Alike License.

Simple English

[[File:|thumb|250px|A scattering of round-brilliant cut diamonds shows off the many reflecting facets.]] A diamond (from the ancient Greek αδάμας – adámas "unbreakable") is an allotrope of carbon. Diamonds have the highest hardness of any bulk material. Because of this, many important industries use diamonds as tools for cutting and polishing things. Many of them are clear, but some of them have colors, like yellow, red, blue, green and pink. Diamonds of a different color are called "fancies". Big diamonds are very rare, and are worth a lot of money. This is because a diamond is very useful - it is very hard and it spreads light very well. There are natural and synthetic diamonds. The earth makes natural diamonds. People make synthetic diamonds. Diamonds are the hardest natural substance known to man.

Diamonds are actually made of pure carbon, the same chemical element as graphite, fullerene, and coal. But diamonds are very hard and in crystalline form.

Because many diamonds are beautiful, people make jewelry using them.

Diamonds are very effective electrical insulators, but also very good conductors of heat.

Diamonds are made deep in the earth, where there is an intense amount of pressure and heat that makes the diamond form. The intense heat and pressure is forming the liquid ore to make volcanic eruptions which surfaces and becomes diamond crystals. (This makes the diamond a metamorphic rock.) Sometimes magma (very hot, liquid rock deep in the earth) having diamonds will come near the top of a volcano. People find diamonds where volcanoes were a long time ago. Sometimes people find diamonds on the top of the ground. But in places like South Africa, they must dig deep down into a diamond mine to get diamonds. Diamonds were first found in India.

Other websites

Simple English Wiktionary has the word meaning for:

Got something to say? Make a comment.
Your name
Your email address