The Full Wiki

More info on Dynamin

Dynamin: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Dynamin is a GTPase responsible for endocytosis in the eukaryotic cell. Dynamins are principally involved in the scission of newly formed vesicles from the membrane of one cellular compartment and their targeting to, and fusion with, another compartment, both at the cell surface (particularly caveolae internalization) as well as at the Golgi apparatus.[1][2][3] Dynamin also plays a role in many processes including division of organelles, cytokinesis and microbial pathogen resistance.

Dynamin is part of the "Dynamin Superfamily," which includes classical dynamins, dynamin-like proteins, Mx proteins, OPA, mitofusins, and GBPs. Dynamin itself is a 96 kDa enzyme, and was first isolated when researchers were attempting to isolate new microtubule-based motors from the bovine brain. Dynamin has been extensively studied within clathrin-coated vesicle budding from the cell membrane.[4][3]



As a vesicle invaginates, dynamin forms a spiral around the neck of the vesicle. Once the spiral is in place, it extends lengthwise and constricts through GTP hydrolysis. This lengthening and tightening of the coil around the vesicle neck causes it to break and results in the pinching off of the vesicle from the parent membrane.[2][4]

To view the effect of GTP and GDP on dynamin spirals, follow this link: [2] In part A of this picture we see dynamin tubes while they are in the presence of GDP; they are large and relaxed. In part B of the picture we see the same dynamin tubes from part one, but in the presence of GTP; they are tight. This is how dynamin works to pinch vesicles off from the membrane.

To view a ‘cartoon’ image of the non-constricted and constricted state of dynamin spirals, please follow this link:[2] The first structure on the left is dynamin in its relaxed state. The structure on the right is dynamin in its constricted state. This allows you to see how much dynamin tightens and changes when GTP is converted to GDP.[1]

This constriction is in part the result of the twisting activity of dynamin [5] This twisting is strictly dependent on its GTPase activity. Dynamin is the only molecular motor known to have a twisting activity. Dynamin is a right-handed helix, and has a right-handed twisting activity that explains its tightening and the pitch reduction described above.


In mammals, three different dynamin genes have been identified.


Recent studies indicate that blocking the interaction between dynamin and syndapin shuts down nerve communications, which may have applications in the treatment of epilepsy, memory loss and schizophrenia.[6]


  1. ^ a b c Henley, J.R., Cao, H., McNicven, M.A. (1999). “Participation of dynamin in the biogenesis of cytoplasmic vesicles”. The FASEB Journal, 13, S243-S247.
  2. ^ a b c d Hinshaw, J. “Dynamin overview: The Role of Dynamin in Membrane Fission”. National institute of diabetes & digestive & kidney diseases, Laboratory of cell biochemistry and biology. accessed 021806.
  3. ^ a b Urrutia, R., Henley, J.R., Cook, T., McNiven, M.A. (1997). “The dynamins: Redundant or distinct functions for an expanding family of related GTPases?” Proc. Natl Acad. Sci. USA, Vol. 94, 377-384.
  4. ^ a b c McMahon. (2004). “Researching Endocytic Mechanisms: Dynamin:. Accompaniment of Nature Reviews on Molecular Cell Biology, 5, 133-147.
  5. ^ Roux A et al. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature. 2006 May 25;441(7092):528-31. PMID: 16648839.
  6. ^ "Epilepsy In The Media - Brain Cell Communication Method Discovered". epilepsyaction. June 2006. Retrieved 2007-11-11.  

External links



Got something to say? Make a comment.
Your name
Your email address