# Electromagnetic stress-energy tensor: Wikis

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

# Encyclopedia

Electromagnetism
Electricity · Magnetism
Covariant formulation
EM Stress-energy tensor · Electromagnetic four-potential

In physics, the electromagnetic stress-energy tensor is the portion of the stress-energy tensor due to the electromagnetic field.

## Definition

### SI units

In free space in SI units, the electromagnetic stress-energy tensor is

$T^{\mu\nu} = -\frac{1}{\mu_0}[ F^{\mu \alpha}F_{\alpha}{}^{\nu} + \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}] \,.$

where Fμν is the electromagnetic tensor. Note: The tensor Tμν is a symmetric tensor.
And in explicit matrix form:

$T^{\mu\nu} =\begin{bmatrix} \frac{1}{2}(\epsilon_0 E^2+\frac{1}{\mu_0}B^2) & S_x/c & S_y/c & S_z/c \\ S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \\ S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \ S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \end{bmatrix}$,

with

Poynting vector $\vec{S}=\frac{1}{\mu_0}\vec{E}\times\vec{B}$,
Electromagnetic field tensor $F_{\mu\nu}\!$,
Minkowski metric tensor $\eta_{\mu\nu}\! = \begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}$, and
Maxwell stress tensor $\sigma_{ij} = \epsilon_0 E_i E_j + \frac{1} {{\mu _0 }}B_i B_j - \frac{1} {2}\left( {\epsilon_0 E^2 + \frac{1} {{\mu _0 }}B^2 } \right)\delta _{ij}$.

Note that $c^2=\frac{1}{\epsilon_0 \mu_0}$ where c is light speed.

### CGS units

In free space in cgs-Gaussian units, we simply substitute $\epsilon_0\,$ with $\frac{1}{4\pi}$ and $\mu_0\,$ with $4\pi\,$ :

$T^{\mu\nu} = -\frac{1}{4\pi} [ F^{\mu\alpha}F_{\alpha}{}^{\nu} + \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}] \,.$

And in explicit matrix form:

$T^{\mu\nu} =\begin{bmatrix} \frac{1}{8\pi}(E^2+B^2) & S_x/c & S_y/c & S_z/c \\ S_x/c & -\sigma_{xx} & -\sigma_{xy} & -\sigma_{xz} \ S_y/c & -\sigma_{yx} & -\sigma_{yy} & -\sigma_{yz} \ S_z/c & -\sigma_{zx} & -\sigma_{zy} & -\sigma_{zz} \end{bmatrix}$

where Poynting vector becomes the form:

$\vec{S}=\frac{c}{4\pi}\vec{E}\times\vec{B}$.

The stress-energy tensor for an electromagnetic field in a dielectric medium is less well understood and is the subject of the unresolved Abraham-Minkowski controversy (however see Pfeifer et al., Rev. Mod. Phys. 79, 1197 (2007)).

The element, $T^{\mu\nu}\!$, of the energy momentum tensor represents the flux of the μth-component of the four-momentum of the electromagnetic field, $P^{\mu}\!$, going through a hyperplane xν = constan t. It represents the contribution of electromagnetism to the source of the gravitational field (curvature of space-time) in general relativity.

## Conservation laws

The electromagnetic stress-energy tensor allows a compact way of writing the conservation laws of linear momentum and energy by electromagnetism.

$\partial_{\nu}T^{\mu \nu} + \eta^{\mu \rho} \, f_{\rho} = 0 \,$

where fρ is the density of the (3D) Lorentz force on matter.

This equation is equivalent to the following 3D conservation laws

$\frac{\partial u_{em}}{\partial t} + \vec{\nabla} \cdot \vec{S} + \vec{J} \cdot \vec{E} = 0 \,$
$\frac{\partial \vec{p}_{em}}{\partial t} - \vec{\nabla}\cdot \sigma + \rho \vec{E} + \vec{J} \times \vec{B} = 0 \,$

where

Electromagnetic energy density (joules/meter3) is $u_{em} = \frac{\epsilon_0}{2}E^2 + \frac{1}{2\mu_0}B^2 \,$
Poynting vector (watts/meter2) is $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \,$
Density of electric current (amperes/meter2) is $\vec{J} \,$
Electromagnetic momentum density (newton·seconds/meter3) is $\vec{p}_{em} = {\vec{S} \over c^2} \,$
Maxwell stress tensor (newtons/meter2) is $\sigma_{ij} = \epsilon_0 E_i E_j + \frac{1}{{\mu _0 }}B_i B_j - \frac{1}{2}\left( {\epsilon_0 E^2 + \frac{1}{{\mu _0 }}B^2 } \right)\delta _{ij} \,$
Density of electric charge (coulombs) is $\rho \,.$