The Full Wiki

Electronic engineering: Wikis

Advertisements
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Electronics engineering, [1] also referred to as electronic engineering[2][3] is an engineering discipline which uses the scientific knowledge of the behavior and effects of electrons to develop components, devices, systems, or equipment (as in electron tubes, transistors, integrated circuits, and printed circuit boards) that uses electricity as part of its driving force. Both terms denote a broad engineering field that encompasses many subfields including those that deal with power, instrumentation engineering, telecommunications, semiconductor circuit design, and many others.[4]

The term also covers a large part of electrical engineering degree courses as studied at most European universities. In the U.S., however, electrical engineering encompasses all electrical disciplines including electronics. The Institute of Electrical and Electronics Engineers is one of the most important and influential organizations for electronic engineers. Indian universities have separate departments for Electronics Engineering.

Contents

Terminology

The name electrical engineering is still used to cover electronic engineering amongst some of the older (notably American and Australian) universities and graduates there are called electrical engineers.[5] Some people believe the term 'electrical engineer' should be reserved for those having specialized in power and heavy current or high voltage engineering, while others believe that power is just one subset of electrical engineering (and indeed the term 'power engineering' is used in that industry) as well as 'electrical distribution engineering'. Again, in recent years there has been a growth of new separate-entry degree courses such as 'information engineering' and 'communication systems engineering', often followed by academic departments of similar name.[6][7]

Most European universities now refer to electrical engineering as power engineers and make a distinction between Electrical and Electronics Engineering. Beginning in the 1980s, the term computer engineer was often used to refer to electronic or information engineers. However, Computer Engineering is now considered a subset of Electronics Engineering and the term is now becoming archaic. [8]

History of electronic engineering

Electronic engineering as a profession sprang from technological improvements in the telegraph industry in the late 1800s and the radio and the telephone industries in the early 1900s. People were attracted to radio by the technical fascination it inspired, first in receiving and then in transmitting. Many who went into broadcasting in the 1920s were only 'amateurs' in the period before World War I.[9]

The modern discipline of electronic engineering was to a large extent born out of telephone, radio, and television equipment development and the large amount of electronic systems development during World War II of radar, sonar, communication systems, and advanced munitions and weapon systems. In the interwar years, the subject was known as radio engineering and it was only in the late 1950s that the term electronic engineering started to emerge.[10]

The electronic laboratories (Bell Labs in the United States for instance) created and subsidized by large corporations in the industries of radio, television, and telephone equipment began churning out a series of electronic advances. In 1948, came the transistor and in 1960, the IC to revolutionize the electronic industry. [11][12] In the UK, the subject of electronic engineering became distinct from electrical engineering as a university degree subject around 1960. Before this time, students of electronics and related subjects like radio and telecommunications had to enroll in the electrical engineering department of the university as no university had departments of electronics. Electrical engineering was the nearest subject with which electronic engineering could be aligned, although the similarities in subjects covered (except mathematics and electromagnetism) lasted only for the first year of the three-year course.

Advertisements

Early electronics

1896 Marconi patent

In 1893, Nikola Tesla made the first public demonstration of radio communication. Addressing the Franklin Institute in Philadelphia and the National Electric Light Association, he described and demonstrated in detail the principles of radio communication.[13] In 1896, Guglielmo Marconi went on to develop a practical and widely used radio system.[14][15][16] In 1904, John Ambrose Fleming, the first professor of electrical Engineering at University College London, invented the first radio tube, the diode. One year later, in 1906, Robert von Lieben and Lee De Forest independently developed the amplifier tube, called the triode.

Electronics are often considered to have begun when Lee De Forest invented the vacuum tube in 1907. Within 10 years, his device was used in radio transmitters and receivers as well as systems for long distance telephone calls. In 1912, Edwin H. Armstrong invented the regenerative feedback amplifier and oscillator; he also invented the superheterodyne radio receiver and could be considered the father of modern radio. [17] Vacuum tubes remained the preferred amplifying device for 40 years, until researchers working for William Shockley at Bell Labs invented the transistor in 1947. In the following years, transistors made small portable radios, or transistor radios, possible as well as allowing more powerful mainframe computers to be built. Transistors were smaller and required lower voltages than vacuum tubes to work. In the interwar years the subject of electronics was dominated by the worldwide interest in radio and to some extent telephone and telegraph communications. The terms 'wireless' and 'radio' were then used to refer to anything electronic. There were indeed few non-military applications of electronics beyond radio at that time until the advent of television. The subject was not even offered as a separate university degree subject until about 1960.[18]

Prior to World War II, the subject was commonly known as 'radio engineering' and basically was restricted to aspects of communications and RADAR, commercial radio and early television. At this time, study of radio engineering at universities could only be undertaken as part of a physics degree. Later, in post war years, as consumer devices began to be developed, the field broadened to include modern TV, audio systems, Hi-Fi and latterly computers and microprocessors. In the mid to late 1950s, the term radio engineering gradually gave way to the name electronic engineering, which then became a stand alone university degree subject, usually taught alongside electrical engineering with which it had become associated due to some similarities.

Before the invention of the integrated circuit in 1959, electronic circuits were constructed from discrete components that could be manipulated by hand. These non-integrated circuits consumed much space and power, were prone to failure and were limited in speed although they are still common in simple applications. By contrast, integrated circuits packed a large number — often millions — of tiny electrical components, mainly transistors, into a small chip around the size of a coin.[19]

Tubes or valves

The vacuum tube detector

The invention of the triode amplifier, generator, and detector made audio communication by radio practical. (Reginald Fessenden's 1906 transmissions used an electro-mechanical alternator.) The first known radio news program was broadcast 31 August 1920 by station 8MK, the unlicensed predecessor of WWJ (AM) in Detroit, Michigan. Regular wireless broadcasts for entertainment commenced in 1922 from the Marconi Research Centre at Writtle near Chelmsford, England.

While some early radios used some type of amplification through electric current or battery, through the mid 1920s the most common type of receiver was the crystal set. In the 1920s, amplifying vacuum tubes revolutionized both radio receivers and transmitters.

Television

In 1928 Philo Farnsworth made the first public demonstration of a purely electronic television. During the 1930s several countries began broadcasting, and after World War II it spread to millions of receivers, eventually worldwide. Ever since then, electronics have been fully present in television devices.

Modern televisions and video displays have evolved from bulky electron tube technology to use more compact devices, such as plasma and LCD displays. The trend is for even lower power devices such as the organic light-emitting diode displays, and it is most likely to replace the LCD and plasma technologies.[20]

Radar and radio location

During World War II many efforts were expended in the electronic location of enemy targets and aircraft. These included radio beam guidance of bombers, electronic counter measures, early radar systems etc. During this time very little if any effort was expended on consumer electronics developments.[21]

Computers

In 1941, Konrad Zuse presented the Z3, the world's first functional computer. After the Colossus computer in 1943, the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed in 1946, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives. Early examples include the Apollo missions and the NASA moon landing.[22]

Transistors

The invention of the transistor in 1947 by William B. Shockley, John Bardeen and Walter Brattain opened the door for more compact devices and led to the development of the integrated circuit in 1959 by Jack Kilby.[23]

Microprocessors

In 1969, Ted Hoff conceived the commercial microprocessor at Intel and thus ignited the development of the personal computer. Hoff's invention was part of an order by a Japanese company for a desktop programmable electronic calculator, which Hoff wanted to build as cheaply as possible. The first realization of the microprocessor was the Intel 4004, a 4-bit processor, in 1969, but only in 1973 did the Intel 8080, an 8-bit processor, make the building of the first personal computer, the MITS Altair 8800, possible. The first PC was announced to the general public on the cover of the January 1975 issue of Popular Electronics. Mechatronics would have a good fortune in the near future.[24]


Many electronics engineers today specialize in the development of programs for microprocessor based electronic systems, known as embedded systems. Due to the detailed knowledge of the hardware that is required for doing this, it is normally done by electronics engineers and not software engineers. Software engineers typically know and use microprocessors only at a conceptual level. Electronics engineers who exclusively carry out the role of programming embedded systems or microprocessors are referred to as "embedded systems engineers", or "firmware engineers".

Electronics

In the field of electronic engineering, engineers design and test circuits that use the electromagnetic properties of electrical components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality. The tuner circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit.

In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit. The conversion from schematics to layouts can be done by software (see electronic design automation) but very often requires human fine-tuning to decrease space and power consumption. Once the layout is complete, it can be sent to a fabrication plant for manufacturing.

Integrated circuits and other electrical components can then be assembled on printed circuit boards to form more complicated circuits. Today, printed circuit boards are found in most electronic devices including televisions, computers and audio players.[25]

Typical electronic engineering undergraduate syllabus

Apart from electromagnetics and network theory, other items in the syllabus are particular to electronics engineering course. Electrical engineering courses have other specialisms such as machines, power generation and distribution. Note that the following list does not include the extensive engineering mathematics curriculum that is a prerequisite to a degree.[26][27]

Electromagnetics

Elements of vector calculus: divergence and curl; Gauss' and Stokes' theorems, Maxwell's equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various media; reflection and refraction; phase and group velocity; skin depth. Transmission lines: characteristic impedance; impedance transformation; Smith chart; impedance matching; pulse excitation. Waveguides: modes in rectangular waveguides; boundary conditions; cut-off frequencies; dispersion relations. Antennas: Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem, antenna gain.[28][29]

Network analysis

Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network theorems: superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation.[30] Steady state sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis of simple RLC circuits, Solution of network equations using Laplace transform: frequency domain analysis of RLC circuits. 2-port network parameters: driving point and transfer functions. State equations for networks.[31]

Electronic devices and circuits

Electronic devices: Energy bands in silicon, intrinsic and extrinsic silicon. Carrier transport in silicon: diffusion current, drift current, mobility, resistivity. Generation and recombination of carriers. p-n junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, p-i-n and avalanche photo diode, LASERs. Device technology: integrated circuit fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.[32][33]

Analog circuits: Equivalent circuits (large and small-signal) of diodes, BJTs, JFETs, and MOSFETs. Simple diode circuits, clipping, clamping, rectifier. Biasing and bias stability of transistor and FET amplifiers. Amplifiers: single-and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.[34]

Digital circuits: of Boolean functions; logic gates digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits: arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Sample and hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor 8086: architecture, programming, memory and I/O interfacing.[35] [36]

Signals and systems

Definitions and properties of Laplace transform, continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier Transform, z-transform. Sampling theorems. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability, impulse response, convolution, poles and zeros frequency response, group delay, phase delay. Signal transmission through LTI systems. Random signals and noise: probability, random variables, probability density function, autocorrelation, power spectral density, function analogy between vectors & functions.[37][38]

Control systems

Basic control system components; block diagrammatic description, reduction of block diagrams — Mason's rule. Open loop and closed loop (negative unity feedback) systems and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steady state analysis of LTI control systems and frequency response. Analysis of steady-state disturbance rejection and noise sensitivity.

Tools and techniques for LTI control system analysis and design: root loci, Routh-Hurwitz stability criterion, Bode and Nyquist plots. Control system compensators: elements of lead and lag compensation, elements of Proportional-Integral-Derivative controller (PID). Discretization of continuous time systems using Zero-order hold (ZOH) and ADCs for digital controller implementation. Limitations of digital controllers: aliasing. State variable representation and solution of state equation of LTI control systems. Linearization of Nonlinear dynamical systems with state-space realizations in both frequency and time domains. Fundamental concepts of controllability and observability for MIMO LTI systems. State space realizations: observable and controllable canonical form. Ackermann's formula for state-feedback pole placement. Design of full order and reduced order estimators. [39][40]

Communications

Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne noise conditions.

Digital communication systems: pulse code modulation (PCM), [[Differential Pulse Code Modulation (DPCM), Delta modulation (DM), digital modulation schemes-amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes, GSM, TDMA.[41][42]

Education and training

Electronics engineers typically possess an academic degree with a major in electronic engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science, Bachelor of Applied Science, or Bachelor of Technology depending upon the university. Many UK universities also offer Master of Engineering (MEng) degrees at undergraduate level.

The degree generally includes units covering physics, chemistry, mathematics, project management and specific topics in electrical engineering. Initially such topics cover most, if not all, of the subfields of electronic engineering. Students then choose to specialize in one or more subfields towards the end of the degree.

Some electronics engineers also choose to pursue a postgraduate degree such as a Master of Science (MSc), Doctor of Philosophy in Engineering (PhD), or an Engineering Doctorate (EngD). The Master degree is being introduced in some European and American Universities as a first degree and the differentiation of an engineer with graduate and postgraduate studies is often difficult. In these cases, experience is taken into account. The Master's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia.

In most countries, a Bachelor's degree in engineering represents the first step towards certification and the degree program itself is certified by a professional body. After completing a certified degree program the engineer must satisfy a range of requirements (including work experience requirements) before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States, Canada and South Africa), Chartered Engineer or Incorporated Engineer (in the United Kingdom, Ireland, India and Zimbabwe), Chartered Professional Engineer (in Australia) or European Engineer (in much of the European Union).

Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design programs when designing electronic systems. Although most electronic engineers will understand basic circuit theory, the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI but are largely irrelevant to engineers working with macroscopic electrical systems.

Professional bodies

Professional bodies of note for electrical engineers include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Electrical Engineers (IEE), now the Institution of Engineering and Technology(IET). The IEEE claims to produce 30 percent of the world's literature in electrical/electronic engineering, has over 370,000 members, and holds more than 450 IEEE sponsored or cosponsored conferences worldwide each year.

Modern electronic engineering

Electronic engineering in Europe is a very broad field that encompasses many subfields including those that deal with, electronic devices and circuit design, control systems, electronics and telecommunications, computer systems, embedded software etc. Many European universities now have departments of electronics that are completely separate from their respective departments of electrical engineering.

Subfields

Electronic engineering has many subfields. This section describes some of the most popular subfields in electronic engineering; although there are engineers who focus exclusively on one subfield, there are also many who focus on a combination of subfields.

Overview of electronic engineering

Electronic engineering involves the design and testing of electronic circuits that use the electronic properties of components such as resistors, capacitors, inductors, diodes and transistors to achieve a particular functionality.

Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information.

For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error checking and error detection of digital signals.

Telecommunications engineering deals with the transmission of information across a channel such as a co-axial cable, optical fiber or free space.

Transmissions across free space require information to be encoded in a carrier wave in order to shift the information to a carrier frequency suitable for transmission, this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer.

Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. If the signal strength of a transmitter is insufficient the signal's information will be corrupted by noise.

Control engineering has a wide range of applications from the flight and propulsion systems of commercial airplanes to the cruise control present in many modern cars. It also plays an important role in industrial automation.

Control engineers often utilize feedback when designing control systems. For example, in a car with cruise control the vehicle's speed is continuously monitored and fed back to the system which adjusts the engine's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback.

Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow and temperature. These devices are known as instrumentation.

The design of such instrumentation requires a good understanding of physics that often extends beyond electromagnetic theory. For example, radar guns use the Doppler effect to measure the speed of oncoming vehicles. Similarly, thermocouples use the Peltier-Seebeck effect to measure the temperature difference between two points.

Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control engineering.

Computer engineering deals with the design of computers and computer systems. This may involve the design of new hardware, the design of PDAs or the use of computers to control an industrial plant. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline.

Desktop computers represent a tiny fraction of the devices a computer engineer might work on, as computer-like architectures are now found in a range of devices including video game consoles and DVD players.

Project engineering

For most engineers not involved at the cutting edge of system design and development, technical work accounts for only a fraction of the work they do. A lot of time is also spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important.

The workplaces of electronics engineers are just as varied as the types of work they do. Electronics engineers may be found in the pristine laboratory environment of a fabrication plant, the offices of a consulting firm or in a research laboratory. During their working life, electronics engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers and other engineers.

Obsolescence of technical skills is a serious concern for electronics engineers. Membership and participation in technical societies, regular reviews of periodicals in the field and a habit of continued learning are therefore essential to maintaining proficiency. And these are mostly used in the field of consumer electronics products.[43]

See also

References

  1. ^ http://www.ieee.org/web/aboutus/home/index.html
  2. ^ Alley, Charles L. (1973). Electronic Engineering. Wiley. ISBN 0471024503. 
  3. ^ "Electronic Engineering". Television Society of Great Britain. 1996. http://books.google.com/books?id=jNkEAQAAIAAJ&q. 
  4. ^ Brett Wilson/Z. Ghassemloooy/I. Darwazeh Analogue Optical Fibre Communications, p. xvi, Institution of Electrical Engineers, 1995 ISBN 978-0852968321
  5. ^ Allan R. Hambley Electrical Engineering, pp. 3, 441, Prentice Hall, 2004 ISBN 978-0131470460
  6. ^ Principles of Electrical Engineering
  7. ^ Anthony J. Pansini Electrical Distribution Engineering, p. xiv, The Fairmont Press Inc., 2006 ISBN 978-0881735468
  8. ^ Smarajit Ghosh Fundamentals of Electrical and Electronic Engineering, p. xxi, PHI Learning Pvt. Ltd., 2004 ISBN 978-8120323162
  9. ^ Erik Barnouw A Tower in Babel, p. 28, Oxford University Press US, 1966 ISBN 978-0195004748
  10. ^ Radio Engineering Principles
  11. ^ Daniel Todd The World Electronics Industry, p. 55, Taylor & Francis, 1990 ISBN 978-0415024976
  12. ^ Silicon Destiny
  13. ^ Proceedings of the Institute of Radio Engineers p. 274
  14. ^ Bryan H. Bunch/Alexander Hellemans The History of Science and Technology, p. 436, Houghton Mifflin Harcourt, 2004 ISBN 978-0618221233
  15. ^ Wireless Telegraphy pp. 166-7
  16. ^ Proceedings of the Institute of Radio Engineers pp. 101-5
  17. ^ Paul J. Nahin The Science of Radio, pp. xxxv-vi, Springer, 2001 ISBN 978-0387951508
  18. ^ Charles Taylor Basic Electronics, Global Media, 2007 ISBN 978-8190457521
  19. ^ David A. Hodges/Horace G. Jackson/Resve A. Saleh Analysis and Design of Digital Integrated Circuits, p. 2, McGraw-Hill Professional, 2003 ISBN 978-0072283655
  20. ^ Joseph Shinar Organic Light-Emitting Devices, p. 45, 2003 ISBN 978-0387953434
  21. ^ Martin L. Van Creveld Technology and War, pp. 267-8, Simon and Schuster, 1991 ISBN 978-0029331538
  22. ^ Eric G. Swedin/David L. Ferro Computers: the life story of a technology, p. 67, Greenwood Publishing Group, 2005 ISBN 978-0313331497
  23. ^ Yunus A. Çengel Heat Transfer, p. 786, McGraw-Hill Professional, 2003 ISBN 978-0072458930
  24. ^ Martin Campbell-Kelly and William Aspray, Computer: A History of the Information Machine, p. 213, Westview Press, 2004. ISBN 978-0813342641.
  25. ^ Charles A. Harper High Performance Printed Circuit Boards, pp. xiii-xiv, McGraw-Hill Professional, 2000 ISBN 978-0070267138
  26. ^ Rakesh K. Garg/Ashish Dixit/Pavan Yadav Basic Electronics, p. 1, Firewall Media, 2008 ISBN 978-8131803028
  27. ^ Sachin S. Sharma Power Electronics, p. ix, Firewall Media, 2008 ISBN 978-8131803509
  28. ^ Edward J. Rothwell/Michael J. Cloud Electromagnetics, CRC Press, 2001 ISBN 978-0849313974
  29. ^ Joseph Edminister Schaum's Outlines Electromagnetics, McGraw Hill Professional, 1995 ISBN 978-0070212343
  30. ^ J. O. Bird Electrical Circuit Theory and Technology, pp. 372-443, Newness, 2007 ISBN 978-0750681391
  31. ^ Alan K. Walton Network Analysis and Practice, Cambridge University Press, 1987 ISBN 978-0521319034
  32. ^ David K. Ferry/Jonathan P. Bird Electronic Materials and Devices, Academic Press, 2001 ISBN 978-0122541612
  33. ^ Jimmie J. Cathey Schaum's Outline of Theory and Problems of Electronic Devices and Circuits, McGraw Hill, 2002 ISBN 978-0071362702
  34. ^ Wai-Kai Chen Analog Circuits and Devices, CRC Press, 2003 ISBN 978-0849317361
  35. ^ Ronald C. Emery Digital Circuits: Logic and Design, CRC Press, 1985 ISBN 978-0824773977
  36. ^ Anant Agarwal/Jeffrey H. Lang Foundation of Analog and Digital Electronic Circuits, Morgan Kaufmann, 2005 ISBN 978-1558607354
  37. ^ Michael J. Roberts Signals and Systems, p. 1, McGraw-Hill Professional, 2003 ISBN 978-0072499421
  38. ^ Hwei Piao Hsu Schaum's Outline of Theory and Problems of Signals and Systems, p. 1, McGraw-Hill Professional, 1995 ISBN 978-0070306417
  39. ^ Gerald Luecke, Analog and Digital Circuits for Electronic Control System Applications, Newnes, 2005. ISBN 978-0750678100.
  40. ^ Joseph J. DiStefano, Allen R. Stubberud, and Ivan J. Williams, Schaum's Outline of Theory and Problems of Feedback and Control Systems, McGraw-Hill Professional, 1995. ISBN 978-0070170520.
  41. ^ Shanmugam, Digital and Analog Communication Systems, Wiley-India, 2006. ISBN 978-8126509140.
  42. ^ Hwei Pia Hsu, Schaum's Outline of Analog and Digital Communications, McGraw-Hill Professional, 2003. ISBN 978-0071402286.
  43. ^ Homer L. Davidson, Troubleshooting and Repairing Consumer Electronics, p. 1, McGraw-Hill Professional, 2004. ISBN 978-0071421812.

External links


Simple English

Electronic engineering is a discipline that investigates all kinds of situations related to electricity and magnetism. Electronic engineers are concerned with such processes as; the transfer of information using radio waves, the design of electronic circuits, the design of computer systems, and the development of control systems such as aircraft auto-pilots and other embedded systems. The term electronic engineering started to emerge in the late 1950s. Before the second world war, electronic engineering was commonly known as a 'radio engineering'. At that time, studying radio engineering at a university was part of a physics degree. Later, as consumer devices started to be developed, the field broadened to include modern TV, audio systems, Hi-Fi and later computers and microprocessors. In the mid to late 1950s, the term radio engineering gradually gave way to the name 'electronic engineering', which then became a stand alone university degree subject. Fundamental studies of the discipline are the sciences of physics and mathematics as these help to get both qualitative and quantitative descriptions of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design programs when designing electronics (electronic systems).


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message