In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup.
When some object X is said to be embedded in another object Y, the embedding is given by some injective and structurepreserving map f : X → Y. The precise meaning of "structurepreserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structurepreserving map is called a morphism.
The fact that a map f : X → Y is an embedding is often indicated by the use of a "hooked arrow", thus:
Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational numbers in the real numbers, and the real numbers in the complex numbers. In such cases it is common to identify the domain X with its image f(X) contained in Y, so that then X ⊆ Y.
Contents 
In general topology, an embedding is a homeomorphism onto its image. More explicitly, a map f : X → Y between topological spaces X and Y is an embedding if f yields a homeomorphism between X and f(X) (where f(X) carries the subspace topology inherited from Y). Intuitively then, the embedding f : X → Y lets us treat X as a subspace of Y. Every embedding is injective and continuous. Every map that is injective, continuous and either open or closed is an embedding; however there are also embeddings which are neither open nor closed. The latter happens if the image f(X) is neither an open set nor a closed set in Y.
For a given space X, the existence of an embedding X → Y is a topological invariant of X. This allows two spaces to be distinguished if one is able to be embedded into a space which the other is not.
In differential topology: Let M and N be smooth manifolds and be a smooth map, it is called an immersion if the derivative of f is everywhere injective. Then an embedding, or a smooth embedding, is defined to be an immersion which is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image).
In other words, an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold. An immersion is a local embedding (i.e. for any point there is a neighborhood such that is an embedding.)
When the domain manifold is compact, the notion of a smooth embedding is equivalent to that of an injective immersion.
An important case is N=R^{n}. The interest here is in how large n must be, in terms of the dimension m of M. The Whitney embedding theorem states that n = 2m is enough. For example the real projective plane of dimension 2 requires n = 4 for an embedding. An immersion of this surface is, however, possible in R^{3}, and one example is Boy's surface—which has selfintersections. The Roman surface fails to be an immersion as it contains crosscaps.
An embedding is proper if it behaves well w.r.t. boundaries: one requires the map to be such that
The first condition is equivalent to having and . The second condition, roughly speaking, says that f(X) is not tangent to the boundary of Y.
In Riemannian geometry: Let (M,g) and (N,h) be Riemannian manifolds. An isometric embedding is a smooth embedding f : M → N which preserves the metric in the sense that g is equal to the pullback of h by f, i.e. g = f*h. Explicitly, for any two tangent vectors
we have
Analogously, isometric immersion is an immersion between Riemannian manifolds which preserves the Riemannian metrics.
Equivalently, an isometric embedding (immersion) is a smooth embedding (immersion) which preserves length of curves (cf. Nash embedding theorem).
In general, for an algebraic category C, an embedding between two Calgebraic structures X and Y is a Cmorphism e:X→Y which is injective.
In field theory, an embedding of a field E in a field F is a ring homomorphism σ : E → F.
The kernel of σ is an ideal of E which cannot be the whole field E, because of the condition σ(1)=1. Furthermore, it is a wellknown property of fields that their only ideals are the zero ideal and the whole field itself. Therefore, the kernel is 0, so any embedding of fields is a monomorphism. Hence, E is isomorphic to the subfield σ(E) of F. This justifies the name embedding for an arbitrary homomorphism of fields.
If σ is a signature and A,B are σstructures (also called σalgebras in universal algebra or models in model theory), then a map is a σembedding iff all the following holds:
Here is a model theoretical notation equivalent to . In model theory there is also a stronger notion of elementary embedding.
In order theory, an embedding of partial orders is a function F from X to Y such that:
.
In domain theory, an additional requirement is:
is directed.
A mapping of metric spaces is called an embedding (with distortion C > 0) if
for some constant L > 0.
An important special case is that of normed spaces; in this case it is natural to consider linear embeddings.
One of the basic questions that can be asked about a finitedimensional normed space is, what is the maximal dimension k such that the Hilbert space can be linearly embedded into X with constant distortion?
The answer is given by Dvoretzky's theorem.
In category theory, there is no satisfactory and generally accepted definition of embeddings that is applicable in all categories. One would expect that all isomorphisms and all compositions of embeddings are embeddings, and that all embeddings are monomorphisms. Other typical requirements are: any extremal monomorphism is an embedding and embeddings are stable under pullbacks.
Ideally the class of all embedded subobjects of a given object, up to isomorphism, should also be small, and thus an ordered set. In this case, the category is said to be well powered with respect to the class of embeddings. This allows to define new local structures on the category (such as a closure operator).
In a concrete category, an embedding is a morphism ƒ: A → B which is an injective function from the underlying set of A to the underlying set of B and is also an initial morphism in the following sense: If g is a function from the underlying set of an object C to the underlying set of A, and if its composition with ƒ is a morphism ƒg: C → B, then g itself is a morphism.
A factorization system for a category also gives rise to a notion of embedding. If (E, M) is a factorization system, then the morphisms in M may be regarded as the embeddings, especially when the category is well powered with respect to M. Concrete theories often have a factorization system in which M consists of the embeddings in the previous sense. This is the case of the majority of the examples given in this article.
As usual in category theory, there is a dual concept, known as quotient. All the preceding properties can be dualized.
An embedding can also refer to an embedding functor.
