Endospore: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Variations in endospore morphology: (1, 4) central endospore; (2, 3, 5) terminal endospore; (6) lateral endospore

An endospore is a dormant, tough, and non-reproductive structure produced by certain Gram-positive bacteria from the Firmicute phylum that forms when a bacterium produces a thick internal wall that encloses its DNA and part of its cytoplasm. Examples include, but are not limited to, Bacillus and Clostridium.[1]

Endospores ensure the survival of a bacterium through periods of environmental stress. They are therefore resistant to ultraviolet and gamma radiation, desiccation, lysozyme, temperature, starvation, and chemical disinfectants. Endospores are commonly found in soil and water, where they may survive for long periods of time. Some bacteria produce exospores or cysts instead.



In contrast to eukaryotic spores, which are produced by many eukaryotes for reproductive purposes, bacteria will produce a single endospore internally. The spore is sometimes surrounded by a thin covering known as the exosporium, which overlies the spore coat. The spore coat, which acts like a sieve that excludes large toxic molecules like lysozyme, is resistant to many toxic molecules and may also contain enzymes that are involved in germination. The cortex lies beneath the spore coat and consists of peptidoglycan. The core wall lies beneath the cortex and surrounds the protoplast or core of the endospore. The core contains the spore chromosomal DNA is encased in chromatin-like proteins known as SASPs, that protect the spore DNA from UV radiation and heat. The core also contains normal cell structures, such as ribosomes and other enzymes, but is not metabolically active.

Up to 15% of the dry weight of the endospore consists of calcium dipicolinate within the core, which is thought to stabilize the DNA. Dipicolinic acid could be responsible for the heat resistance of the spore, and calcium may aid in resistance to heat and oxidizing agents. However, mutants resistant to heat but lacking dipicolinic acid have been isolated, suggesting other mechanisms contributing to heat resistance are at work[2].


The position of the endospore differs among bacterial species and is useful in identification. The main types within the cell are terminal, subterminal, and centrally placed endospores. Terminal endospores are seen at the poles of cells, whereas central endospores are more or less in the middle. Subterminal endospores are those between these two extremes, usually seen far enough towards the poles but close enough to the center so as not to be considered either terminal or central. Lateral endospores are seen occasionally.

Examples of bacteria having terminal endospores include Clostridium tetani, the pathogen that causes the disease tetanus. Bacteria having a centrally placed endospore include Bacillus cereus, and those having a subterminal endospore include Bacillus subtilis. Sometimes the endospore can be so large the cell can be distended around the endospore, this is typical of Clostridium tetani.

Visualising endospores under the light microscope can be difficult due to the impermeability of the endospore wall to dyes and stains. While the rest of a bacterial cell may stain, the endospore is left colourless. To combat this, a special stain technique called a Moeller stain is used. That allows the endospore to show up as red, while the rest of the cell stains blue. Another staining technique for endospores is the Schaeffer-Fulton stain, which stains endospores green and bacterial bodies red. The arrangement of spore layers is following ,

    Spore coat
    Spore cortex
    Core wall
       In  mycoplasma the layers are poorly developed endospre contain less amount of Calcium & Calcium compounds.

Formation and destruction

A stained preparation of Bacillus subtilis showing endospores as green and the vegetative cell as red

When a bacterium detects environmental conditions are becoming unfavourable it may start the process of sporulation, which takes about eight hours. The DNA is replicated and a membrane wall known as a spore septum begins to form between it and the rest of the cell. The plasma membrane of the cell surrounds this wall and pinches off to leave a double membrane around the DNA, and the developing structure is now known as a forespore. Calcium dipicolinate is incorporated into the forespore during this time. Next the peptidoglycan cortex forms between the two layers and the bacterium adds a spore coat to the outside of the forespore. Sporulation is now complete, and the mature endospore will be released when the surrounding vegetative cell is degraded.

Endospores are resistant to most agents that would normally kill the vegetative cells they formed from. Household cleaning products generally have no effect, nor do most alcohols, quaternary ammonium compounds or detergents. Alkylating agents however, such as ethylene oxide, are effective against endospores.

While resistant to extreme heat and radiation, endospores can be destroyed by burning or by autoclaving. Endospores are able to survive boiling at 100°C for hours, although the longer the number of hours the fewer that will survive. An indirect way to destroy them is to place them in an environment that reactivates them to their vegetative state. They will germinate within a day or two with the right environmental conditions, and then the vegetative cells can be straightforwardly destroyed. This indirect method is called Tyndallization. It was the usual method for a while in the late 19th century before the advent of inexpensive autoclaves. Prolonged exposure to high energy radiation, such as x-rays and gamma rays, will also kill most endospores.


Reactivation of the endospore occurs when conditions are more favourable and involves activation, germination, and outgrowth. Even if an endospore is located in plentiful nutrients, it may fail to germinate unless activation has taken place. This may be triggered by heating the endospore. Germination involves the dormant endospore starting metabolic activity and thus breaking hibernation. It is commonly characterised by rupture or absorption of the spore coat, swelling of the endospore, an increase in metabolic activity, and loss of resistance to environmental stress. Outgrowth follows germination and involves the core of the endospore manufacturing new chemical components and exiting the old spore coat to develop into a fully functional vegetative bacterial cell, which can divide to produce more cells.


As a simplified model for cellular differentiation, the molecular details of endospore formation have been extensively studied, specifically in the model organism Bacillus subtilis. These studies have contributed much to our understanding of the regulation of gene expression, transcription factors, and the sigma factor subunits of RNA polymerase.

Endospores of the bacterium Bacillus anthracis were used in the 2001 anthrax attacks. The powder found in contaminated postal letters was composed of extracellular anthrax endospores. Inhalation, ingestion or skin contamination of these endospores, which were technically incorrectly labelled as "spores", led to a number of deaths.

Geobacillus stearothermophilus endospores are used as biological indicators when an autoclave is used in sterilization procedures.

Endospore-forming bacteria

Examples of endospore-forming bacteria include the genera:

  • Acetonema
  • Alkalibacillus
  • Ammoniphilus
  • Amphibacillus
  • Anaerobacter
  • Anaerospora
  • Aneurinibacillus
  • Anoxybacillus
  • Bacillus
  • Brevibacillus
  • Caldanaerobacter
  • Caloramator
  • Caminicella
  • Cerasibacillus
  • Clostridium
  • Clostridiisalibacter
  • Cohnella
  • Dendrosporobacter
  • Desulfotomaculum
  • Desulfosporomusa
  • Desulfosporosinus
  • Desulfovirgula
  • Desulfunispora
  • Desulfurispora
  • Filifactor
  • Filobacillus
  • Gelria
  • Geobacillus
  • Geosporobacter
  • Gracilibacillus
  • Halonatronum
  • Heliobacterium
  • Heliophilum
  • Laceyella
  • Lentibacillus
  • Lysinibacillus
  • Mahella
  • Metabacterium
  • Moorella
  • Natroniella
  • Oceanobacillus
  • Orenia
  • Ornithinibacillus
  • Oxalophagus
  • Oxobacter
  • Paenibacillus
  • Paraliobacillus
  • Pelospora
  • Pelotomaculum
  • Piscibacillus
  • Planifilum
  • Pontibacillus
  • Propionispora
  • Salinibacillus
  • Salsuginibacillus
  • Seinonella
  • Shimazuella
  • Sporacetigenium
  • Sporoanaerobacter
  • Sporobacter
  • Sporobacterium
  • Sporohalobacter
  • Sporolactobacillus
  • Sporomusa
  • Sporosarcina
  • Sporotalea
  • Sporotomaculum
  • Syntrophomonas
  • Syntrophospora
  • Tenuibacillus
  • Tepidibacter
  • Terribacillus
  • Thalassobacillus
  • Thermoacetogenium
  • Thermoactinomyces
  • Thermoalkalibacillus
  • Thermoanaerobacter
  • Thermoanaeromonas
  • Thermobacillus
  • Thermoflavimicrobium
  • Thermovenabulum
  • Tuberibacillus
  • Virgibacillus
  • Vulcanobacillus


  1. ^ endospore at Dorland's Medical Dictionary
  2. ^ Prescott, L. (1993). Microbiology, Wm. C. Brown Publishers, ISBN 0-697-01372-3.

External links


Simple English

Endospores are objects made by bacteria for survival purposes. They have a tough coating which is resistant to radiation (like X-rays and UV light) and chemicals.

A Bacterial cell will make an endospore when it is low on food so it can survive until there is more food available in the environment. An endospore will actually contain all of the important parts of the bacterial cell, such as its DNA.


Got something to say? Make a comment.
Your name
Your email address