Engineering geology: Wikis

Advertisements
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Engineering Geology is the application of the geologic sciences to engineering practice for the purpose of assuring that the geologic factors affecting the location, design, construction, operation and maintenance of engineering works are recognized and adequately provided for. Engineering geologists investigate and provide geologic and geotechnical recommendations, analysis, and design associated with human development. The realm of the engineering geologist is essentially in the area of earth-structure interactions, or investigation of how the earth or earth processes impact human made structures and human activities.

Engineering geologic studies may be performed during the planning, environmental impact analysis, civil or structural engineering design, value engineering and construction phases of public and private works projects, and during post-construction and forensic phases of projects. Works completed by engineering geologists include; geologic hazards, geotechnical, material properties, landslide and slope stability, erosion, flooding, dewatering, and seismic investigations, etc. Engineering geologic studies are performed by a geologist or engineering geologist that is educated, trained and has obtained experience related to the recognition and interpretation of natural processes, the understanding of how these processes impact man-made structures (and vice versa), and knowledge of methods by which to mitigate for hazards resulting for adverse natural or man-made conditions. The principal objective of the engineering geologist is the protection of life and property against damage caused by geologic conditions.

Engineering geologic practice is also closely related to the practice of geological engineering, geotechnical engineering, soils engineering, environmental geology and economic geology. If there is a difference in the content of the disciplines described, it mainly lies in the training or experience of the practitioner.

Contents

History

Although the science of geology has been around since the 1700s, at least in its modern form, the science and practice of engineering geology didn't begin as a recognized discipline until the late 1800s and early 1900s. The first book entitled Engineering Geology was published in 1880 by William Penning. In the early 1900s Charles Berkey, and American trained geologist who was considered the first American engineering geologists, worked on a number of water supply projects for New York City, then later work on the Hoover dam and a multitude of other engineering projects. The first American engineering geology text book was written in 1914 by Ries and Watson. In 1925, Karl Terzaghi, an Austrian trained engineer and geologist, published the first text in Soil Mechanics (in German). Terzaghi is known as the father of soil mechanics, but also had great interest in geology; Terzaghi considered soil mechanics to be a sub-discipline of engineering geology. In 1929, Terzaghi, along with Redlich and Kampe, published their own Engineering Geology text (also in German).

The need for geologist on engineering works gained world wide attention in 1928 with the failure of the St. Francis dam in California and the loss of 426 lives. More engineering failures which occurred the following years also prompted the requirement for engineering geologists to work on large engineering projects.

In 1951, one of the earliest definitions of the "Engineering geologist" or "Professional Engineering Geologist" was provided by the Executive Committee of the Division on Engineering Geology of the Geological Society of America.

The Practice

One of the most important roles of the engineering geologist is the interpretation of landforms and earth processes to identify potential geologic and related man-made hazards that may impact civil structures and human development. Nearly all engineering geologists are initially trained and educated in geology, primarily during their undergraduate education. This background in geology provides the engineering geologist with an understanding of how the earth works, which is crucial in mitigating for earth related hazards. Most engineering geologists also have graduate degrees where they have gained specialized education and training in soil mechanics, rock mechanics, geotechnics, groundwater, hydrology, and civil design. These two aspects of the engineering geologists' education provides them with a unique ability to understand and mitigate for hazards associated with earth-structure interactions.

Scope of Studies

Engineering geologic studies may be performed:

Geohazards and adverse geo-conditions

Typical geologic hazards or other adverse conditions evaluated and mitigated by an engineering geologist include:

An engineering geologist or geophysicist may be called upon to evaluate the excavatability (i.e. rippability) of earth (rock) materials to assess the need for pre-blasting during earthwork construction, as well as associated impacts due to vibration during blasting on projects.

Soil and Rock Mechanics

Soil mechanics is a discipline that applies principles of engineering mechanics, e.g. kinematics, dynamics, fluid mechanics, and mechanics of material, to predict the mechanical behavior of soils. Rock mechanics is the theoretical and applied science of the mechanical behaviour of rock and rock masses; it is that branch of mechanics concerned with the response of rock and rock masses to the force fields of their physical environment. The fundamental processes are all related to the behaviour of porous media. Together, soil and rock mechanics are the basis for solving many engineering geologic problems.

Methods and reporting

The methods used by engineering geologists in their studies include

The field work is typically culminated in analysis of the data and the preparation of an engineering geologic report, geotechnical report, fault hazard or seismic hazard report, geophysical report, ground water resource report or hydrogeologic report. The engineering geologic report is often prepared in conjunction with a geotechnical report, but commonly provide geotechnical analysis and design recommendations independent of a geotechnical report. An engineering geologic report describes the objectives, methodology, references cited, tests performed, findings and recommendations for development. Engineering geologists also provide geologic data on topograpic maps, aerial photographs, geologic maps, Geographic Information System (GIS) maps, or other map bases.

See also

References: Engineering Geology

  • Bates and Jackson, 1980, Glossary of Geology: American Geological Institute.
  • The Heritage of Engineering Geology: The First Hundred Years: GSA Centennial Special Volume 3, 1991
  • Price, David George, Engineering Geology: Principles and Practice, Springer, 2008 ISBN 3540292497
  • Bulletin of Engineering Geology and the Environment

References: Geological Modelling

  • Wang H. F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton Press, (2000).
  • Yang X. S., Mathematical Modelling for Earth Sciences, Dunedin Academic Press, (2008).
  • Waltham T., Foundations of Engineering Geology, 2nd Edition, Taylor & Francis, (2001).
Advertisements

Engineering Geology is the application of the geologic sciences to engineering practice for the purpose of assuring that the geologic factors affecting the location, design, construction, operation and maintenance of engineering works are recognized and adequately provided for. Engineering geologists investigate and provide geologic and geotechnical recommendations, analysis, and design associated with human development. The realm of the engineering geologist is essentially in the area of earth-structure interactions, or investigation of how the earth or earth processes impact human made structures and human activities.

Engineering geologic studies may be performed during the planning, environmental impact analysis, civil or structural engineering design, value engineering and construction phases of public and private works projects, and during post-construction and forensic phases of projects. Works completed by engineering geologists include; geologic hazards, geotechnical, material properties, landslide and slope stability, erosion, flooding, dewatering, and seismic investigations, etc. Engineering geologic studies are performed by a geologist or engineering geologist that is educated, trained and has obtained experience related to the recognition and interpretation of natural processes, the understanding of how these processes impact man-made structures (and vice versa), and knowledge of methods by which to mitigate for hazards resulting from adverse natural or man-made conditions. The principal objective of the engineering geologist is the protection of life and property against damage caused by geologic conditions.

Engineering geologic practice is also closely related to the practice of geological engineering, geotechnical engineering, soils engineering, environmental geology and economic geology. If there is a difference in the content of the disciplines described, it mainly lies in the training or experience of the practitioner.

Contents

History

Although the science of geology has been around since the 18th century, at least in its modern form, the science and practice of engineering geology didn't begin as a recognized discipline until the late 19th and early 20th centuries. The first book entitled Engineering Geology was published in 1880 by William Penning. In the early 20th century Charles Berkey, an American trained geologist who was considered the first American engineering geologist, worked on a number of water supply projects for New York City, then later worked on the Hoover dam and a multitude of other engineering projects. The first American engineering geology text book was written in 1914 by Ries and Watson. In 1925, Karl Terzaghi, an Austrian trained engineer and geologist, published the first text in Soil Mechanics (in German). Terzaghi is known as the father of soil mechanics, but also had great interest in geology; Terzaghi considered soil mechanics to be a sub-discipline of engineering geology. In 1929, Terzaghi, along with Redlich and Kampe, published their own Engineering Geology text (also in German).

The need for geologist on engineering works gained world wide attention in 1928 with the failure of the St. Francis dam in California and the loss of 426 lives. More engineering failures which occurred the following years also prompted the requirement for engineering geologists to work on large engineering projects.

In 1951, one of the earliest definitions of the "Engineering geologist" or "Professional Engineering Geologist" was provided by the Executive Committee of the Division on Engineering Geology of the Geological Society of America.

The Practice

One of the most important roles of the engineering geologist is the interpretation of landforms and earth processes to identify potential geologic and related man-made hazards that may impact civil structures and human development. Nearly all engineering geologists are initially trained and educated in geology, primarily during their undergraduate education. This background in geology provides the engineering geologist with an understanding of how the earth works, which is crucial in mitigating for earth related hazards. Most engineering geologists also have graduate degrees where they have gained specialized education and training in soil mechanics, rock mechanics, geotechnics, groundwater, hydrology, and civil design. These two aspects of the engineering geologists' education provides them with a unique ability to understand and mitigate for hazards associated with earth-structure interactions.

Scope of Studies

Engineering geologic studies may be performed:

Geohazards and adverse geo-conditions

Typical geologic hazards or other adverse conditions evaluated and mitigated by an engineering geologist include:

An engineering geologist or geophysicist may be called upon to evaluate the excavatability (i.e. rippability) of earth (rock) materials to assess the need for pre-blasting during earthwork construction, as well as associated impacts due to vibration during blasting on projects.

Soil and Rock Mechanics

Soil mechanics is a discipline that applies principles of engineering mechanics, e.g. kinematics, dynamics, fluid mechanics, and mechanics of material, to predict the mechanical behavior of soils. Rock mechanics is the theoretical and applied science of the mechanical behaviour of rock and rock masses; it is that branch of mechanics concerned with the response of rock and rock masses to the force fields of their physical environment. The fundamental processes are all related to the behaviour of porous media. Together, soil and rock mechanics are the basis for solving many engineering geologic problems.

Methods and reporting

The methods used by engineering geologists in their studies include

The field work is typically culminated in analysis of the data and the preparation of an engineering geologic report, geotechnical report, fault hazard or seismic hazard report, geophysical report, ground water resource report or hydrogeologic report. The engineering geologic report is often prepared in conjunction with a geotechnical report, but commonly provide geotechnical analysis and design recommendations independent of a geotechnical report. An engineering geologic report describes the objectives, methodology, references cited, tests performed, findings and recommendations for development. Engineering geologists also provide geologic data on topograpic maps, aerial photographs, geologic maps, Geographic Information System (GIS) maps, or other map bases.

See also

References: Engineering Geology

  • Bates and Jackson, 1980, Glossary of Geology: American Geological Institute.
  • Kiersh, 1991, The Heritage of Engineering Geology: The First Hundred Years: Geological Society of America; Centennial Special Volume 3
  • Legget, Robert F., editor, 1982, Geology under cities: Geological Society of America; Reviews in Engineering Geology, volume V, 131 pages; contains nine articles by separate authors for these cities: Washington, DC; Boston; Chicago; Edmonton; Kansas City; New Orleans; New York City; Toronto; and Twin Cities, Minnesota.
  • Legget, Robert F., and Karrow, Paul F., 1983, Handbook of geology in civil engineering: McGraw-Hill Book Company, 1,340 pages, 50 chapters, five appendices, 771 illustrations. ISBN 0-07-037061-3
  • Price, David George, Engineering Geology: Principles and Practice, Springer, 2008 ISBN 3-540-29249-7
  • Prof. D. Venkat Reddy, NIT-Karnataka, Engineering Geology, Vikas Publishers, 2010 ISBN-978-81259-19032
  • Bulletin of Engineering Geology and the Environment

References: Geological Modelling

  • Wang H. F., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton Press, (2000).
  • Yang X. S., Mathematical Modelling for Earth Sciences, Dunedin Academic Press, (2008).
  • Waltham T., Foundations of Engineering Geology, 2nd Edition, Taylor & Francis, (2001).

Study guide

Up to date as of January 14, 2010

From Wikiversity

Welcome. Engineering geology related content may be developed on this topic page. Topic pages are meant to be used to organize the development content on Wikiversity.

Please, feel free to improve upon what you see.

Learning projects and resources

Learning materials and learning projects can be used by multiple departments. Please cooperate with other departments that use the same learning resource.

Wikiversity has adopted the "learning by doing" model for education. Lessons should center on learning activities for participants.

Select a descriptive name for each learning project.

  • Engineering geology
  • Search

Readings


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message