The Full Wiki

Error detection and correction: Wikis

Advertisements
  
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

In information theory and coding theory with applications in computer science and telecommunication, error detection and correction or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data.

The general definitions of the terms are as follows:

  • Error detection is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver.[1]
  • Error correction is the detection of errors and reconstruction of the original, error-free data.

Error correction may generally be realized in two different ways:

  • Automatic repeat request (ARQ) (sometimes also referred to as backward error correction): This is an error control technique whereby an error detection scheme is combined with requests for retransmission of erroneous data. Every block of data received is checked using the error detection code used, and if the check fails, retransmission of the data is requested – this may be done repeatedly, until the data can be verified.
  • Forward error correction (FEC): The sender encodes the data using an error-correcting code (ECC) prior to transmission. The additional information (redundancy) added by the code is used by the receiver to recover the original data. In general, the reconstructed data is what is deemed the "most likely" original data.

ARQ and FEC may be combined, such that minor errors are corrected without retransmission, and major errors are corrected via a request for retransmission: this is called hybrid automatic repeat-request (HARQ).

Contents

Error detection schemes

Several schemes exist to achieve error detection. The general idea is to add some redundancy (i.e., some extra data) to a message, which enables detection of any errors in the delivered message. Most such error-detection schemes are systematic: The transmitter sends the original data bits, and attaches a fixed number of check bits, which are derived from the data bits by some deterministic algorithm. The receiver applies the same algorithm to the received data bits and compares its output to the received check bits; if the values do not match, an error has occurred at some point during the transmission. In a system that uses a "non-systematic" code, such as some raptor codes, the original message is transformed into an encoded message that has at least as many bits as the original message.

In general, any hash function may be used to compute the redundancy. However, some functions are of particularly widespread use because of either their simplicity or their suitability for detecting certain kinds of errors (e.g., the cyclic redundancy check's performance in detecting burst errors).

Error-correcting codes can provide a suitable alternative to hash functions when a strict guarantee on the minimum number of errors to be detected is desired. Repetition codes, described below, are special cases of error-correcting codes: although rather inefficient, they find applications for both error correction and detection due to their simplicity.

Advertisements

Repetition codes

A repetition code is a coding scheme that repeats the bits across a channel to achieve error-free communication. Given a stream of data to be transmitted, the data is divided into blocks of bits. Each block is transmitted some predetermined number of times. For example, to send the bit pattern "1011", the four-bit block can be repeated three times, thus producing "1011 1011 1011". However, if this twelve-bit pattern was received as "1010 1011 1011" – where the first block is unlike the other two – it can be determined that an error has occurred.

Repetition codes are not very efficient, and can be susceptible to problems if the error occurs in exactly the same place for each group (e.g., "1010 1010 1010" in the previous example would be detected as correct). The advantage of repetition codes is that it they are extremely simple, and are in fact used in some transmissions of numbers stations.[citation needed]

Parity bits

A parity bit is a bit that is added to ensure that the number of set bits (i.e., bits with the value 1) in a group of bits is even or odd. A parity bit can only detect an odd number of errors (i.e., one, three, five, etc. bits that are incorrect).

There are two variants of parity bits: even parity bit and odd parity bit. When using even parity, the parity bit is set to 1 if the number of ones in a given set of bits (not including the parity bit) is odd, making the entire set of bits (including the parity bit) even. When using odd parity, the parity bit is set to 1 if the number of ones in a given set of bits (not including the parity bit) is even, making the entire set of bits (including the parity bit) odd. In other words, an even parity bit will be set if the number of set bits plus one is even, and an odd parity bit will be set if the number of set bits plus one is odd.

There is a limitation to parity schemes. A parity bit is only guaranteed to detect an odd number of bit errors. If an even number of bits (i.e., two, four, six, etc.) are flipped, the parity bit will appear to be correct even though the data is erroneous. Extensions and variations on the parity bit mechanism are horizontal redundancy checks, vertical redundancy checks, and "double," "dual," or "diagonal" parity (used in RAID-DP).

Checksums

A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a one's-complement prior to transmission to detect errors resulting in all-zero messages.

Checksum schemes include parity bits, check digits, and longitudinal redundancy checks. Some checksum schemes, such as the Luhn algorithm and the Verhoeff algorithm, are specifically designed to detect errors commonly introduced by humans in writing down or remembering identification numbers.

Cyclic redundancy checks (CRCs)

A cyclic redundancy check (CRC) is a cyclic code and non-secure hash function designed to detect accidental changes to raw computer data. Its computation resembles a polynomial long division by a so-called generator polynomial in which the quotient is discarded and the remainder becomes the result, with the important distinction that the polynomial coefficients are calculated according to the carry-less arithmetic of a finite field.

Cyclic codes have favorable properties in that they are well suited for detecting burst errors. CRCs are particularly easy to implement in hardware, and are therefore commonly used in digital networks and storage devices such as hard disk drives.

Even parity is a special case of a cyclic redundancy check, where the single-bit CRC is generated by the divisor x+1.

Cryptographic hash functions

A cryptographic hash function can provide strong assurances about data integrity, provided that changes of the data are only accidental (i.e., due to transmission errors). Any modification to the data will likely be detected through a mismatching hash value. Furthermore, given some hash value, it is infeasible to find some input data (other than the one given) that will yield the same hash value. Message authentication codes, also called keyed cryptographic hash functions, provide additional protection against intentional modification by an attacker.

Error-correcting codes

Any error-correcting code can be used for error detection. A code with minimum Hamming distance, d, can detect up to d-1 errors in a code word. Using error-correcting codes for error detection can be suitable if a strict limit on the minimum number of errors to be detected is desired.

Codes with minimum Hamming distance d=2 are degenerate cases of error-correcting codes, and can be used to detect single errors. The parity bit is an example of a single-error-detecting code.

The Berger code is an early example of a unidirectional error(-correcting) code that can detect any number of errors on an asymmetric channel, provided that only transitions of cleared bits to set bits or set bits to cleared bits can occur.

Error correction

Automatic repeat request

Automatic Repeat reQuest (ARQ) is an error control method for data transmission that makes use of error-detection codes, acknowledgment and/or negative acknowledgment messages, and timeouts to achieve reliable data transmission. An acknowledgment is a message sent by the receiver to indicate that it has correctly received a data frame.

Usually, when the transmitter does not receive the acknowledgment before the timeout occurs (i.e., within a reasonable amount of time after sending the data frame), it retransmits the frame until it is either correctly received or the error persists beyond a predetermined number of retransmissions.

Three types of ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ, and Selective Repeat ARQ.

ARQ is appropriate if the communication channel has varying or unknown capacity, such as is the case on the Internet. However, ARQ requires the availability of a back channel, results in possibly increased latency due to retransmissions, and requires the maintenance of buffers and timers for retransmissions, which in the case of network congestion can put a strain on the server and overall network capacity.[2]

Error-correcting code

An error-correcting code (ECC) or forward error correction (FEC) code is a system of adding redundant data, or parity data, to a message, such that it can be recovered by a receiver even when a number of errors (up to the capability of the code being used) were introduced, either during the process of transmission, or on storage. Since the receiver does not have to ask the sender for retransmission of the data, a back-channel is not required in forward error correction, and it is therefore suitable for simplex communication such as broadcasting. Error-correcting codes are frequently used in lower-layer communication, as well as for reliable storage in media such as CDs, DVDs, and dynamic RAM.

Error-correcting codes are usually distinguished between convolutional codes and block codes:

  • Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding.

Shannon's theorem is an important theorem in forward error correction, and describes the maximum information rate at which reliable communication is possible over a channel that has a certain error probability or signal-to-noise ratio (SNR). This strict upper limit is expressed in terms of the channel capacity. More specifically, the theorem says that there exist codes such that with increasing encoding length the probability of error on a discrete memoryless channel can be made arbitrarily small, provided that the code rate is smaller than the channel capacity. The code rate is defined as the fraction k/n of k source symbols and n encoded symbols.

The actual maximum code rate allowed depends on the error-correcting code used, and may be lower. This is because Shannon's proof was only of existential nature, and did not show how to construct codes which are both optimal and have efficient encoding and decoding algorithms.

Hybrid schemes

Hybrid ARQ is a combination of ARQ and forward error correction. There are two basic approaches[2]:

  • Messages are always transmitted with FEC parity data (and error-detection redundancy). A receiver decodes a message using the parity information, and requests retransmission using ARQ only if the parity data was not sufficient for successful decoding (identified through a failed integrity check).
  • Messages are transmitted without parity data (only with error-detection information). If a receiver detects an error, it requests FEC information from the transmitter using ARQ, and uses it to reconstruct the original message.

The latter approach is particularly attractive on the binary erasure channel when using a rateless erasure code.

Applications

Applications that require low latency (such as telephone conversations) cannot use Automatic Repeat reQuest (ARQ); they must use Forward Error Correction (FEC). By the time an ARQ system discovers an error and re-transmits it, the re-sent data will arrive too late to be any good.

Applications where the transmitter immediately forgets the information as soon as it is sent (such as most television cameras) cannot use ARQ; they must use FEC because when an error occurs, the original data is no longer available. (This is also why FEC is used in data storage systems such as RAID and distributed data store).

Applications that use ARQ must have a return channel. Applications that have no return channel cannot use ARQ.

Applications that require extremely low error rates (such as digital money transfers) must use ARQ.

The Internet

In a typical TCP/IP stack, error control is performed at multiple levels:

  • Each Ethernet frame carries a CRC-32 checksum. Frames received with incorrect checksums are discarded by the receiver hardware.
  • The IPv4 header contains a checksum protecting the contents of the header. Packets with mismatching checksums are dropped within the network or at the receiver.
  • The checksum was omitted from the IPv6 header in order to minimize processing costs in network routing and because current link layer technology is assumed to provide sufficient error detection (see also RFC 3819).
  • UDP has an optional checksum covering the payload and addressing information from the UDP and IP headers. Packets with incorrect checksums are discarded by the operating system network stack. The checksum is optional under IPv4, only, because the IP layer checksum may already provide the desired level of error protection.
  • TCP provides a checksum for protecting the payload and addressing information from the TCP and IP headers. Packets with incorrect checksums are discarded within the network stack, and eventually get retransmitted using ARQ, either explicitly (such as through triple-ack) or implicitly due to a timeout.

Deep-space telecommunications

Development of error-correction codes was tightly coupled with the history of deep-space missions due to the extreme dilution of signal power over interplanetary distances, and the limited power availability aboard space probes. Whereas early missions sent their data uncoded, starting from 1968 digital error correction was implemented in the form of (sub-optimally decoded) convolutional codes and Reed-Muller codes.[3] The Reed-Muller code was well suited to the noise the spacecraft was subject to (approximately matching a Bell curve), and was implemented at the Mariner spacecraft for missions between 1969 and 1977.

The Voyager 1 and Voyager 2 missions, which started in 1977, were designed to deliver color imaging amongst scientific information of Jupiter and Saturn.[4] This resulted in increased coding requirements, and thus the spacecrafts were supported by (optimally Viterbi-decoded) convolutional codes that could be concatenated with an outer Golay (24,12,8) code. The Voyager 2 probe additionally supported an implementation of a Reed-Solomon code: the concatenated Reed-Solomon-Viterbi (RSV) code allowed for very powerful error correction, and enabled the spacecraft's extended journey to Uranus and Neptune.

The CCSDS currently recommends usage of error correction codes with performance similar to the Voyager 2 RSV code as a minimum. Concatenated codes are increasingly falling out of favor with space missions, and are replaced by more powerful codes such as Turbo codes or LDPC codes.

The different kinds of deep space and orbital missions that are conducted suggest that trying to find a "one size fits all" error correction system will be an ongoing problem for some time to come. For missions close to earth the nature of the channel noise is different from that a spacecraft on an interplanetary mission experiences. Additionally, as a spacecraft increases its distance from earth, the problem of correcting for noise gets larger.

Satellite broadcasting (DVB)

The demand for satellite transponder bandwidth continues to grow, fueled by the desire to deliver television (including new channels and High Definition TV) and IP data. Transponder availability and bandwidth constraints have limited this growth, because transponder capacity is determined by the selected modulation scheme and Forward error correction (FEC) rate.

Overview

  • QPSK coupled with traditional Reed Solomon and Viterbi codes have been used for nearly 20 years for the delivery of digital satellite TV.
  • Higher order modulation schemes such as 8PSK, 16QAM and 32QAM have enabled the satellite industry to increase transponder efficiency by several orders of magnitude.
  • This increase in the information rate in a transponder comes at the expense of an increase in the carrier power to meet the threshold requirement for existing antennas.
  • Tests conducted using the latest chipsets demonstrate that the performance achieved by using Turbo Codes may be even lower than the 0.8 dB figure assumed in early designs.

Data storage

Error detection and correction codes are often used to improve the reliability of data storage media.

A "parity track" was present on the first magnetic tape data storage in 1951. The "Optimal Rectangular Code" used in group code recording tapes not only detects but also corrects single-bit errors.

Some file formats, particularly archive formats, include a checksum (most often CRC32) to detect corruption and truncation and can employ redundancy and/or parity files to recover portions of corrupted data.

Reed Solomon codes are used in compact discs to correct errors caused by scratches.

Modern hard drives use CRC codes to detect and Reed-Solomon codes to correct minor errors in sector reads, and to recover data from sectors that have "gone bad" and store that data in the spare sectors.[5]

RAID systems use a variety of error correction techniques, to correct errors when a hard drive completely fails.

Error-correcting memory

DRAM memory may provide increased protection against soft errors by relying on error correcting codes. Such error-correcting memory, known as ECC or EDAC-protected memory, is particularly desirable for high fault-tolerant applications, such as servers, as well as deep-space applications due to increased radiation.

Error-correcting memory controllers traditionally use Hamming codes, although some use triple modular redundancy.

Interleaving allows distributing the effect of a single cosmic ray potentially upsetting multiple physically neighboring bits across multiple words by associating neighboring bits to different words. As long as a single event upset (SEU) does not exceed the error threshold (e.g., a single error) in any particular word between accesses, it can be corrected (e.g., by a single-bit error correcting code), and the illusion of an error-free memory system may be maintained.[6]

See also

Notes

  1. ^ See also Encyclopedia of Microcomputers: Volume 6, p. 343.
  2. ^ a b A. J. McAuley, Reliable Broadband Communication Using a Burst Erasure Correcting Code, ACM SIGCOMM, 1990.
  3. ^ K. Andrews et al., The Development of Turbo and LDPC Codes for Deep-Space Applications, Proceedings of the IEEE, Vol. 95, No. 11, Nov. 2007.
  4. ^ W. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, ISBN-13: 9780521782807 | ISBN-10: 0521782805, 2003.
  5. ^ My Hard Drive Died | Scott A. Moulton
  6. ^ "Using StrongArm SA-1110 in the On-Board Computer of Nanosatellite". Tsinghua Space Center, Tsinghua University, Beijing. http://www.apmcsta.org/File/doc/Conferences/6th%20meeting/Chen%20Zhenyu.doc. Retrieved 2009-02-16. 

References

  • Shu Lin, Daniel J. Costello, Jr. (1983). Error Control Coding: Fundamentals and Applications. Prentice Hall. ISBN 0-13-283796-X. 

External links


Simple English

Error detection and correction is the name for a number of technologies that are used to make sure that information or data is not corrupted, that it still makes sense.

Detecting an error

There are different ways to make sure an error can be detected. This is done by adding more data or information to the data transmitted. Adding more data than needed is called redundancy.

  • Repetition codes: The data is broken up into blocks. Each block is then sent a number of times.
  • Parity bits can be used. The parity bit is 1 for an odd number of ones, and 0 for an even number (or vice versa)
  • Checksums
  • Cyclic Redundancy Checks
  • Hamming codes
  • Hash function
  • Horizontal and Vertical Redundancy Check
  • Polarity schemes

Correcting an error

Certain means allow to correct an error:


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message