# Euler–Mascheroni constant: Wikis

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

# Encyclopedia

 List of numbers – Irrational and suspected irrational numbers γ – ζ(3) – √2 – √3 – √5 – φ – ρ – δS – α – e – π – δ Binary 0.100100111100010001... Decimal 0.5772156649015328606065... Hexadecimal 0.93C467E37DB0C7A4D1BE... Continued fraction [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, … ][1] (This continued fraction is not periodic. Shown in linear notation)

The Euler–Mascheroni constant (also called Euler's constant) is a mathematical constant recurring in analysis and number theory, usually denoted by the lowercase Greek letter γ (gamma).

It is defined as the limiting difference between the harmonic series and the natural logarithm:

$\gamma = \lim_{n \rightarrow \infty } \left( \sum_{k=1}^n \frac{1}{k} - \ln(n) \right)=\int_1^\infty\left({1\over\lfloor x\rfloor}-{1\over x}\right)\,dx.$

Its numerical value to 50 decimal places is

0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 … (sequence A001620 in OEIS).

γ should not to be confused with the base of the natural logarithm, e, which is sometimes called Euler's number.

## History

The constant first appeared in a 1735 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notation C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time because of the constant's connection to the gamma function. For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835.[2]

## Appearances

The Euler–Mascheroni constant appears, among other places, in ('*' means that this entry contains an explicit equation):

## Properties

The number γ has not been proved algebraic or transcendental. In fact, it is not even known whether γ is irrational. Continued fraction analysis reveals that if γ is rational, its denominator must be greater than 10242080.[3] The ubiquity of γ revealed by the large number of equations below makes the irrationality of γ a major open question in mathematics. Also see Sondow (2003a).

For more equations of the sort shown below, see Gourdon and Sebah (2002).

### Relation to gamma function

γ is related to the digamma function Ψ, and hence the derivative of the gamma function Γ, when both functions are evaluated at 1. Thus:

$\ -\gamma = \Gamma'(1) = \Psi(1).$

This is equal to the limits:

$-\gamma = \lim_{z\to 0} \left\{\Gamma(z) - \frac1{z} \right\} = \lim_{z\to 0} \left\{\Psi(z) + \frac1{z} \right\}.$

Further limit results are (Krämer, 2005):

$\lim_{z\to 0} \frac1{z}\left\{\frac1{\Gamma(1+z)} - \frac1{\Gamma(1-z)} \right\} = 2\gamma$
$\lim_{z\to 0} \frac1{z}\left\{\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)} \right\} = \frac{\pi^2}{3\gamma^2}.$

A limit related to the Beta function (expressed in terms of gamma functions) is

$\gamma = \lim_{n \to \infty} \left \{\frac{ \Gamma(\frac{1}{n}) \Gamma(n+1)\, n^{1+1/n}}{\Gamma(2+n+\frac{1}{n})} - \frac{n^2}{n+1} \right\}.$
$\gamma = \lim\limits_{m \to \infty}\sum_{k=1}^m{m \choose k}\frac{(-1)^k}{k}\ln(\Gamma(k+1)).$

### Relation to the zeta function

γ can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

\begin{align}\gamma &= \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{m} \\ &= \ln \left ( \frac{4}{\pi} \right ) + \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{2^{m-1}m}.\end{align}

Other series related to the zeta function include:

\begin{align} \gamma &= \frac{3}{2}- \ln 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m} [\zeta(m)-1] \ &= \lim_{n \to \infty} \left [ \frac{2\,n-1}{2\,n} - \ln\,n + \sum_{k=2}^n \left ( \frac{1}{k} - \frac{\zeta(1-k)}{n^k} \right ) \right ] \ &= \lim_{n \to \infty} \left [ \frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{m \,n}}{(m+1)!} \sum_{t=0}^m \frac{1}{t+1} - n\, \ln 2+ O \left ( \frac{1}{2^n\,e^{2^n}} \right ) \right ].\end{align}

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling the Euler–Mascheroni constant are the antisymmetric limit (Sondow, 1998)

$\gamma = \lim_{s \to 1^+} \sum_{n=1}^\infty \left ( \frac{1}{n^s}-\frac{1}{s^n} \right ) = \lim_{s \to 1} \left ( \zeta(s) - \frac{1}{s-1} \right )$

and

\begin{align} \gamma = \lim_{n \to \infty} \frac{1}{n}\, \sum_{k=1}^n \left ( \left \lceil \frac{n}{k} \right \rceil - \frac{n}{k} \right ).\end{align}

Closely related to this is the rational zeta series expression. By peeling off the first few terms of the series above, one obtains an estimate for the classical series limit:

$\gamma = \sum_{k=1}^n \frac{1}{k} - \ln n - \sum_{m=2}^\infty \frac{\zeta (m,n+1)}{m}$

where ζ(s,k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

$H_n = \ln n + \gamma + \frac {1} {2n} - \frac {1} {12n^2} + \frac {1} {120n^4} - \varepsilon$, where $0 < \varepsilon < \frac {1} {252n^6}.$

### Integrals

γ equals the value of a number of definite integrals:

\begin{align}\gamma &= - \int_0^\infty { e^{-x} \ln x }\,dx \ &= -\int_0^1 \ln\ln\left (\frac{1}{x}\right) dx \ &= \int_0^\infty \left (\frac1{e^x-1}-\frac1{xe^x} \right)dx = \int_0^1\left(\frac 1{\ln x} + \frac 1{1-x}\right)dx\ &= \int_0^\infty \left (\frac1{1+x^k}-e^{-x} \right)\frac{dx}{x},\quad k>0.\end{align}

Definite integrals in which γ appears include:

$\int_0^\infty { e^{-x^2} \ln x }\,dx = -\tfrac14(\gamma+2 \ln 2) \sqrt{\pi}$
$\int_0^\infty { e^{-x} \ln^2 x }\,dx = \gamma^2 + \frac{\pi^2}{6} .$

One can express γ using a special case of Hadjicostas's formula as a double integral (Sondow 2003a, 2005) with equivalent series:

$\gamma = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1-x\,y)\ln(x\,y)} \, dx\,dy = \sum_{n=1}^\infty \left ( \frac{1}{n}-\ln\frac{n+1}{n} \right ).$

An interesting comparison by J. Sondow (2005) is the double integral and alternating series

$\ln \left ( \frac{4}{\pi} \right ) = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1+x\,y)\ln(x\,y)} \, dx\,dy = \sum_{n=1}^\infty (-1)^{n-1} \left( \frac{1}{n}-\ln\frac{n+1}{n} \right).$

It shows that $\ln \left ( \frac{4}{\pi} \right )$ may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series (see Sondow 2005 #2)

$\sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} = \gamma$
$\sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} = \ln \left ( \frac{4}{\pi} \right )$

where N1(n) and N0(n) are the number of 1's and 0's, respectively, in the base 2 expansion of n.

We have also Catalan's 1875 integral (see Sondow and Zudilin)

$\gamma = \int_0^1 \frac{1}{1+x} \sum_{n=1}^\infty x^{2^n-1} \, dx.$

### Series expansions

Euler showed that the following infinite series approaches γ:

$\gamma = \sum_{k=1}^\infty \left[ \frac{1}{k} - \ln \left( 1 + \frac{1}{k} \right) \right].$

The series for γ is equivalent to series Nielsen found in 1897:

$\gamma = 1 - \sum_{k=2}^{\infty}(-1)^k\frac{\lfloor\log_2 k\rfloor}{k+1}$.

In 1910, Vacca found the closely related series:

${ \gamma = \sum_{k=2}^\infty (-1)^k \frac{ \left \lfloor \log_2 k \right \rfloor}{k} = \frac12-\frac13 + 2\left(\frac14 - \frac15 + \frac16 - \frac17\right) + 3\left(\frac18 - \frac19 + \frac1{10} - \frac1{11} + \dots - \frac1{15}\right) + \dots }$

where log2 is the logarithm to the base 2 and $\lfloor \, \rfloor$ is the floor function.

In 1926 he found a second series:

${\gamma + \zeta(2) = \sum_{k=2}^\infty\left(\frac1{\lfloor \sqrt{k} \rfloor^2} - \frac1{k}\right) = \sum_{k=2}^{\infty} \frac{k - \lfloor\sqrt{k}\rfloor^2}{k\lfloor\sqrt{k}\rfloor^2} = \frac12 + \frac23 + \frac1{2^2} \sum_{k=1}^{2 \times 2} \frac k {k+2^2} + \frac1{3^2} \sum_{k=1}^{3 \times 2} \frac k {k+3^2} + \dots}$

From the Kummer-expansion of the gamma function we get:

$\gamma = \ln\pi - 4\ln\Gamma(\tfrac34) + \frac4{\pi}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\ln(2k+1)}{2k+1}$

### Asymptotic expansions

γ equals the following asymptotic formulas (where Hn is the nth harmonic number.)

$\gamma \sim H_n - \ln \left( n \right) - \frac{1}{{2n}} + \frac{1}{{12n^2 }} - \frac{1}{{120n^4 }} + ...$
(Euler)
$\gamma \sim H_n - \ln \left( {n + \frac{1}{2} + \frac{1}{{24n}} - \frac{1}{{48n^3 }} + ...} \right)$
(Negoi)
$\gamma \sim H_n - \frac{{\ln \left( n \right) + \ln \left( {n + 1} \right)}}{2} - \frac{1}{{6n\left( {n + 1} \right)}} + \frac{1}{{30n^2 \left( {n + 1} \right)^2 }} - ...$
(Cesaro)

The third formula is also called the Ramanujan expansion.

### Relations with the reciprocal logarithm

The reciprocal logarithm function (Krämer, 2005)

$\frac{z}{\ln(1-z)} = \sum_{n=0}^{\infty}C_nz^n, \quad |z|<1,$

has a deep connection with Euler's constant and was studied by James Gregory in connection with numerical integration. The coefficients Cn are called Gregory coefficients; the first six were given in a letter to John Collins in 1670. From the recursion

$C_0 = -1,\quad \sum_{k=0}^{n-1}\frac{C_k}{n-k} = 0,\quad n=2,3,4,\dots,$

we get the table

n 1 2 3 4 5 6 7 8 9 10
Cn $\tfrac12$ $\tfrac1{12}$ $\tfrac1{24}$ $\tfrac{19}{720}$ $\tfrac3{160}$ $\tfrac{863}{60480}$ $\tfrac{275}{24192}$ $\tfrac{33953}{3628800}$ $\tfrac{8183}{1036800}$ $\tfrac{3250433}{479001600}$

Gregory coefficients are similar to Bernoulli numbers and satisfy the asymptotic relation

$C_n = \frac1{n\ln^2 n} - \mathcal{O}\left(\frac1{n\ln^3 n}\right),\quad n\to\infty,$

and the integral representation

$C_n = \int_0^{\infty}\frac{dx}{(1+x)^n\left(\ln^2 x + \pi^2\right)},\quad n=1,2,\dots.$

Euler's constant has the integral representations

$\gamma = \int_0^{\infty}\frac{\ln(1+x)}{\ln^2 x + \pi^2}\cdot\frac{dx}{x^2} = \int_{-\infty}^{\infty}\frac{\ln(1+e^{-x})}{x^2 + \pi^2}\,e^x\,dx.$

A very important expansion of Gregorio Fontana (1780) is:

\begin{align} H_n &= \gamma + \log n + \frac1{2n} - \sum_{k=2}^{\infty}\frac{(k-1)!C_k}{n(n+1)\dots(n+k-1)},\quad n=1,2,\dots,\ &= \gamma + \log n + \frac1{2n} - \frac1{12n(n+1)} - \frac1{12n(n+1)(n+2)} - \frac{19}{120n(n+1)(n+2)} - \dots \end{align}

which is convergent for all n.

Weighted sums of the Gregory coefficients give different constants:

\begin{align} 1 &= \sum_{n=1}^{\infty}C_n = \tfrac12 + \tfrac1{12} + \tfrac1{24} + \tfrac{19}{720} + \tfrac3{160} + \dots,\ \frac1{\log2} - 1 &= \sum_{n=1}^{\infty}(-1)^{n+1}C_n = \tfrac12 - \tfrac1{12} + \tfrac1{24} - \tfrac{19}{720} + \tfrac3{160} - \dots,\ \gamma &= \sum_{n=1}^{\infty}\frac{C_n}{n} = \tfrac12 + \tfrac1{24} + \tfrac1{72} + \tfrac{19}{2880} + \tfrac3{800} + \dots. \end{align}

### eγ

The constant eγ is important in number theory. Some authors denote this quantity simply as γ'. eγ equals the following limit, where pn is the n-th prime number:

$e^\gamma = \lim_{n \to \infty} \frac {1} {\ln p_n} \prod_{i=1}^n \frac {p_i} {p_i - 1}.$

This restates the third of Mertens' theorems. The numerical value of eγ is:

$e^\gamma =1.78107241799019798523650410310717954916964521430343\dots$

Other infinite products relating to eγ include:

$\frac{e^{1+\gamma /2}}{\sqrt{2\,\pi}} = \prod_{n=1}^\infty e^{-1+1/(2\,n)}\,\left (1+\frac{1}{n} \right )^n$
$\frac{e^{3+2\gamma}}{2\, \pi} = \prod_{n=1}^\infty e^{-2+2/n}\,\left (1+\frac{2}{n} \right )^n.$

These products result from the Barnes G-function.

We also have

$e^{\gamma} = \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4} \left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/5} \cdots$

where the nth factor is the (n+1)st root of

$\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}.$

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow (2003) using hypergeometric functions.

### Continued fraction

The continued fraction expansion of γ is of the form [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (sequence A002852 in OEIS), and has at least 470,000 terms.[3]

## Generalizations

Euler's generalized constants are given by

$\gamma_\alpha = \lim_{n \to \infty} \left[ \sum_{k=1}^n \frac{1}{k^\alpha} - \int_1^n \frac{1}{x^\alpha} \, dx \right],$

for 0 < α < 1, with γ as the special case α = 1.[4] This can be further generalized to

$c_f = \lim_{n \to \infty} \left[ \sum_{k=1}^n f(k) - \int_1^n f(x) \, dx \right]$

for some arbitrary decreasing function f. For example,

$f_n(x) = \frac{\ln^n x}{x}$

gives rise to the Stieltjes constants, and

fa(x) = x a

gives

$\gamma_{f_a} = \frac{(a-1)\zeta(a)-1}{a-1}$

where again the limit

$\gamma = \lim_{a\to1}\left[ \zeta(a) - \frac{1}{a-1}\right]$

appears.

A two-dimensional limit generalization is the Masser–Gramain constant.

## Known digits

Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th-22nd decimal places. (starting from the 20th digit, he calculated 1811209008239 when the correct value is 0651209008240.)

In recent decades, faster computers and algorithms have dramatically increased the number of calculated digits in the decimal expansion of γ.[5]

Number of known decimal digits of γ
Date Decimal digits Computation performed by
1734 5 Leonhard Euler
1736 15 Leonhard Euler
1790 19 Lorenzo Mascheroni
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1857 34 Christian Fredrik Lindman
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 99 James W.L. Glaisher
1871 101 William Shanks
1952 329 John William Wrench, Jr.
1961 1050 Helmut Fischer and Carl Zeller
1962 1,271 Donald Knuth
1962 3,566 Dura W. Sweeney
1973 4,879 William A. Beyer and Michael S. Waterman
1977 20,700 Richard P. Brent
1980 30,100 Richard P. Brent & Edwin M. McMillan
1993 172,000 Jonathan Borwein
1997 1,000,000 Thomas Papanikolaou
December 1998 7,286,255 Xavier Gourdon
October 1999 108,000,000 Xavier Gourdon & Patrick Demichel
July 16, 2006 2,000,000,000 Shigeru Kondo & Steve Pagliarulo[6]
July 15, 2007 5,000,000,000 Shigeru Kondo & Steve Pagliarulo[7]
June 30, 2008 10,000,000,000 Shigeru Kondo & Steve Pagliarulo[8]
January 18, 2009 14,922,244,771 Alexander J. Yee & Raymond Chan[9]
March 13, 2009 29,844,489,545 Alexander J. Yee & Raymond Chan[10]