In science, particularly in physics or engineering education, a Fermi problem, Fermi question, or Fermi estimate is an estimation problem designed to teach dimensional analysis, approximation, and the importance of clearly identifying one's assumptions. Named after physicist Enrico Fermi, such problems typically involve making justified guesses about quantities that seem impossible to compute given limited available information.
Fermi was known for his ability to make good approximate calculations with little or no actual data, hence the name. One example is his estimate of the strength of the atomic bomb detonated at the Trinity test, based on the distance travelled by pieces of paper dropped from his hand during the blast.^{[1]} Fermi's estimate of 10 kilotons of TNT was remarkably close to the nowaccepted value of around 20 kilotons, a difference of less than one order of magnitude.
Contents 
The classic Fermi problem, generally attributed to Fermi,^{[2]} is "How many piano tuners are there in Chicago?" A typical solution to this problem would involve multiplying together a series of estimates that would yield the correct answer if the estimates were correct. For example, we might make the following assumptions:
From these assumptions we can compute that the number of piano tunings in a single year in Chicago is
We can similarly calculate that the average piano tuner performs
Dividing gives
A famous example of a Fermiproblemlike estimate is the Drake equation, which seeks to estimate the number of intelligent civilizations in the galaxy. The basic question of why, if there are a significant number of such civilizations, ours has never encountered any others is called the Fermi paradox.
Scientists often look for Fermi estimates of the answer to a problem before turning to more sophisticated methods to calculate a precise answer. This provides a useful check on the results: where the complexity of a precise calculation might obscure a large error, the simplicity of Fermi calculations makes them far less susceptible to such mistakes. (Performing the Fermi calculation first is preferable because the intermediate estimates might otherwise be biased by knowledge of the calculated answer.)
Fermi estimates are also useful in approaching problems where the optimal choice of calculation method depends on the expected size of the answer. For instance, a Fermi estimate might indicate whether the internal stresses of a structure are low enough that it can be accurately described by linear elasticity; or if the estimate already bears significant relationship in scale relative to some other value, for example, if a structure will be overengineered to withstand loads several times greater than the estimate.
Although Fermi calculations are often not accurate, as there may be many problems with their assumptions, this sort of analysis does tell us what to look for to get a better answer. For the above example, we might try to find a better estimate of the number of pianos tuned by a piano tuner in a typical day, or look up an accurate number for the population of Chicago. It also gives us a rough estimate that may be good enough for some purposes: if we want to start a store in Chicago that sells piano tuning equipment, and we calculate that we need 10,000 potential customers to stay in business, we can reasonably assume that the above estimate is far enough below 10,000 that we should consider a different business plan (and, with a little more work, we could compute a rough upper bound on the number of piano tuners by considering the most extreme reasonable values that could appear in each of our assumptions).
There are a number of university level courses devoted to estimation and the solution of Fermi problems. The materials for these courses are a good source for additional Fermi problem examples and material about solution strategies
In science, particularly in physics or engineering education, a Fermi problem, Fermi question, or Fermi estimate is an estimation problem designed to teach dimensional analysis, approximation, and the importance of clearly identifying one's assumptions. Named after physicist Enrico Fermi, such problems typically involve making justified guesses about quantities that seem impossible to compute given limited available information.
Fermi was known for his ability to make good approximate calculations with little or no actual data, hence the name. One example is his estimate of the strength of the atomic bomb detonated at the Trinity test, based on the distance travelled by pieces of paper dropped from his hand during the blast.^{[1]} Fermi's estimate of 10 kilotons of TNT was remarkably close to the nowaccepted value of around 20 kilotons, a difference of less than one order of magnitude.
Contents 
The classic Fermi problem, generally attributed to Fermi,^{[2]} is "How many piano tuners are there in Chicago?" A typical solution to this problem would involve multiplying together a series of estimates that would yield the correct answer if the estimates were correct. For example, we might make the following assumptions:
From these assumptions we can compute that the number of piano tunings in a single year in Chicago is
We can similarly calculate that the average piano tuner performs
Dividing gives
A famous example of a Fermiproblemlike estimate is the Drake equation, which seeks to estimate the number of intelligent civilizations in the galaxy. The basic question of why, if there is a significant number of such civilizations, ours has never encountered any others is called the Fermi paradox.
Scientists often look for Fermi estimates of the answer to a problem before turning to more sophisticated methods to calculate a precise answer. This provides a useful check on the results: where the complexity of a precise calculation might obscure a large error, the simplicity of Fermi calculations makes them far less susceptible to such mistakes. (Performing the Fermi calculation first is preferable because the intermediate estimates might otherwise be biased by knowledge of the calculated answer.)
Fermi estimates are also useful in approaching problems where the optimal choice of calculation method depends on the expected size of the answer. For instance, a Fermi estimate might indicate whether the internal stresses of a structure are low enough that it can be accurately described by linear elasticity; or if the estimate already bears significant relationship in scale relative to some other value, for example, if a structure will be overengineered to withstand loads several times greater than the estimate.
Although Fermi calculations are often not accurate, as there may be many problems with their assumptions, this sort of analysis does tell us what to look for to get a better answer. For the above example, we might try to find a better estimate of the number of pianos tuned by a piano tuner in a typical day, or look up an accurate number for the population of Chicago. It also gives us a rough estimate that may be good enough for some purposes: if we want to start a store in Chicago that sells piano tuning equipment, and we calculate that we need 10,000 potential customers to stay in business, we can reasonably assume that the above estimate is far enough below 10,000 that we should consider a different business plan (and, with a little more work, we could compute a rough upper bound on the number of piano tuners by considering the most extreme reasonable values that could appear in each of our assumptions).
A Fermi calculation that involves the multiplication of several estimated factors (e.g. the number of piano tuners in Chicago) will probably be more accurate than might be first supposed (assuming that there is no consistent bias in the estimated factors). This is because if there is no consistent bias, then there will probably (with a binomial distribution) be some factors that are estimated too high and other factors that are estimated too low, and such errors will partially cancel each other out.
There are a number of university level courses devoted to estimation and the solution of Fermi problems. The materials for these courses are a good source for additional Fermi problem examples and material about solution strategies
