The Full Wiki

Friction welding: Wikis

Advertisements
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Friction welding (FW) is a class of solid-state welding processes that generates heat through mechanical friction between a moving workpiece and a stationary component, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Technically, because no melt occurs, friction welding is not actually a welding process in the traditional sense, but a forging technique. However, due to the similarities between these techniques and traditional welding, the term has become common. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications.

Contents

Benefits

The combination of fast joining times of the order of a few seconds, and the direct heat input at the weld interface, gives rise to relatively small heat affected zones. Friction welding techniques are generally melt-free, which offers the advantage of avoiding grain growth in engineered materials such as high-strength heat-treated steels. Another advantage is that the motion tends to "clean" the surface between the materials being welded, which means they can be joined without as much prior preparation. During the welding process, depending on the method being used, small pieces of the "plastic" metal will be forced out of the working mass in rippled sheets of metal known as "flash". It is believed that the flash carries away debris and dirt.

Another advantage of friction welding is that it allows dissimilar materials to be joined. This is particularly useful in the aerospace field, where it is used to join lightweight aluminum stock to high-strength steels. Normally the wide difference in melting points of the two materials would make it impossible to weld using traditional techniques, and would require some sort of mechanical connection instead (bolts, etc.). Friction welding provides a "full strength" bond with no additional weight. Another common use for these sorts of bi-metal joins is in the nuclear industry, where copper-steel joints are common in the reactor cooling systems.

Friction welding is also used with thermoplastics, which act in a fashion analogous to metals under heat and pressure. The heats and pressures used on these materials are much lower than on metals, but the technique can be used to join metals to plastics with the metal interface being machined. For instance, the technique can be used to join eyeglass frames to the pins in their hinges. The lower energies and pressures used allows for a wider variety of techniques to be used.

History of Friction Welding

Further patents were issued throughout Europe and the former Soviet Union. The US companies Caterpillar, Rockwell International, and American Manufacturing Foundry all developed machines for this process. The most extensive historical records are kept with the American Welding Society.

Metal techniques

Advertisements

Spin welding

Spin welding systems consist of two chucks for holding the materials to be welded, one of which is fixed and the other rotating. Before welding one of the work pieces is attached to the rotating chuck along with a flywheel of a given weight. The piece is then spun up to a high rate of rotation to store the required energy in the flywheel. Once spinning at the proper speed, the motor is removed and the pieces forced together under pressure. The force is kept on the pieces after the spinning stops to allow the weld to "set".[1] This technique is also known as inertia welding, rotational welding or inertial friction welding. [2]

Linear friction welding

Linear friction welding (LFW) is similar to spin welding except that the moving chuck oscillates laterally instead of spinning. The speeds are much lower in general, which requires the pieces to be kept under pressure at all times. This also requires the parts to have a high shear strength. Linear friction welding requires more complex machinery than spin welding, but has the advantage that parts of any shape can be joined, as opposed to parts with a circular meeting point.

Friction surfacing

Friction surfacing is a process derived from friction welding whereby a coating material is applied to a substrate. A rod composed of the coating material (called a mechtrode) is rotated under pressure, generating a plasticised layer in the rod at the interface with the substrate. By moving a substrate across the face of the rotating rod a plasticised layer is deposited between 0.2–2.5 mm thick depending on mechtrode diameter and coating material.

Thermoplastic techniques

Linear vibration welding

In Linear vibration welding the materials are placed in contact and put under pressure. An external vibration force is then applied to slip the pieces relative to each other, perpendicular to the pressure being applied. The parts are vibrated through a relatively small displacement known as the amplitude, typically between 1.0 and 1.8 mm, for a frequency of vibration of 200 Hz (high frequency), or 2–4 mm at 100 Hz (low frequency), in the plane of the joint. This technique is widely used in the automotive industry, among others.[3] A minor modification is angular friction welding, which vibrates the materials by torquing them through a small angle.

Orbital friction welding

Orbital friction welding is similar to spin welding, but uses a more complex machine to produce an orbital motion in which the moving part rotates in a small circle, much smaller than the size of the joint as a whole.

References

External links


Friction welding (FW) is a class of solid-state welding processes that generates heat through mechanical friction between a moving workpiece and a stationary component, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Technically, because no melt occurs, friction welding is not actually a welding process in the traditional sense, but a forging technique. However, due to the similarities between these techniques and traditional welding, the term has become common. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications.

Contents

Benefits

The combination of fast joining times of the order of a few seconds, and the direct heat input at the weld interface, gives rise to relatively small heat affected zones. Friction welding techniques are generally melt-free, which offers the advantage of avoiding grain growth in engineered materials such as high-strength heat-treated steels. Another advantage is that the motion tends to "clean" the surface between the materials being welded, which means they can be joined without as much prior preparation. During the welding process, depending on the method being used, small pieces of the "plastic" metal will be forced out of the working mass in rippled sheets of metal known as "flash". It is believed that the flash carries away debris and dirt.

Another advantage of friction welding is that it allows dissimilar materials to be joined. This is particularly useful in the aerospace field, where it is used to join lightweight aluminum stock to high-strength steels. Normally the wide difference in melting points of the two materials would make it impossible to weld using traditional techniques, and would require some sort of mechanical connection instead (bolts, etc.). Friction welding provides a "full strength" bond with no additional weight. Another common use for these sorts of bi-metal joins is in the nuclear industry, where copper-steel joints are common in the reactor cooling systems.

Friction welding is also used with thermoplastics, which act in a fashion analogous to metals under heat and pressure. The heats and pressures used on these materials are much lower than on metals, but the technique can be used to join metals to plastics with the metal interface being machined. For instance, the technique can be used to join eyeglass frames to the pins in their hinges. The lower energies and pressures used allows for a wider variety of techniques to be used.

History of Friction Welding

Further patents were issued throughout Europe and the former Soviet Union. The US companies Caterpillar, Rockwell International, and American Manufacturing Foundry all developed machines for this process. The most extensive historical records are kept with the American Welding Society.

Metal techniques

Spin welding

Spin welding systems consist of two chucks for holding the materials to be welded, one of which is fixed and the other rotating. Before welding one of the work pieces is attached to the rotating chuck along with a flywheel of a given weight. The piece is then spun up to a high rate of rotation to store the required energy in the flywheel. Once spinning at the proper speed, the motor is removed and the pieces forced together under pressure. The force is kept on the pieces after the spinning stops to allow the weld to "set".[1] This technique is also known as inertia welding, rotational welding or inertial friction welding.

Linear friction welding

Linear friction welding (LFW) is similar to spin welding except that the moving chuck oscillates laterally instead of spinning. The speeds are much lower in general, which requires the pieces to be kept under pressure at all times. This also requires the parts to have a high shear strength. Linear friction welding requires more complex machinery than spin welding, but has the advantage that parts of any shape can be joined, as opposed to parts with a circular meeting point.

Friction surfacing

Friction surfacing is a process derived from friction welding whereby a coating material is applied to a substrate. A rod composed of the coating material (called a mechtrode) is rotated under pressure, generating a plasticised layer in the rod at the interface with the substrate. By moving a substrate across the face of the rotating rod a plasticised layer is deposited between 0.2–2.5 mm thick depending on mechtrode diameter and coating material.

Thermoplastic techniques

Linear vibration welding

In Linear vibration welding the materials are placed in contact and put under pressure. An external vibration force is then applied to slip the pieces relative to each other, perpendicular to the pressure being applied. The parts are vibrated through a relatively small displacement known as the amplitude, typically between 1.0 and 1.8 mm, for a frequency of vibration of 200 Hz (high frequency), or 2–4 mm at 100 Hz (low frequency), in the plane of the joint. This technique is widely used in the automotive industry, among others.[2] A minor modification is angular friction welding, which vibrates the materials by torquing them through a small angle.

Orbital friction welding

Orbital friction welding is similar to spin welding, but uses a more complex machine to produce an orbital motion in which the moving part rotates in a small circle, much smaller than the size of the joint as a whole.

References

External links


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message