Gastrointestinal tract: Wikis

  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Gastrointestinal tract

Include this on your site/blog:

Encyclopedia

(Redirected to Human gastrointestinal tract article)

From Wikipedia, the free encyclopedia

Salivary glands Parotid gland Submandibular gland Sublingual gland Pharynx Tongue Esophagus Pancreas Pancreatic duct Stomach Ileum Anus Rectum Vermiform appendix Cecum Descending colon Ascending colon Transverse colon Bile duct Duodenum Gallbladder Liver Oral cavity
Upper and Lower human gastrointestinal tract

The digestive system is the system by which ingested food is acted upon by physical and chemical means to provide the body with nutrients it can absorb and to excrete waste products; in mammals the system includes the alimentary canal extending from the mouth to the anus, and the hormones and enzymes assisting in digestion.

In an adult male human, the gastrointestinal (GI) tract is approximately 5 metres (20 ft) long in a live subject, or up to 9 metres (30 ft) without the effect of muscle tone, and consists of the upper and lower GI tracts. The tract may also be divided into foregut, midgut, and hindgut, reflecting the embryological origin of each segment of the tract.[1]

The GI tract releases hormones as to help regulate the digestion process. These hormones, including gastrin, secretin, cholecystokinin, and grehlin, are mediated through either intracrine or autocrine mechanisms, indicating that the cells releasing these hormones are conserved structures throughout evolution.[2]

Contents

Upper gastrointestinal tract

The upper gastrointestinal tract consists of the mouth cavity, pharynx, esophagus, stomach,and duodenum.

  • Behind the mouth lies the epiglottis which prevents food from entering the voice box and leads to a hollow muscular tube, the esophagus.
  • Peristalsis takes place, which is the contraction of muscles to propel the food down the esophagus which extends through the chest and pierces the diaphragm to reach the stomach.

Lower gastrointestinal tract

The lower gastrointestinal tract comprises the most of the intestines and the anus.

Component Organs

The main organs of the digestive system are:

  • Mouth
  • Esophagus
  • Stomach
  • Small and Large intestines
  • Rectum
  • Anus

Other organs consist of the:

  • Salivary glands
  • Gallbladder
  • Liver
  • Pancreas

Accessory organs

Accessory organs to the alimentary canal include the liver, gallbladder, and pancreas. The liver secretes bile into the small intestine via the bile duct employing the gallbladder as a reservoir. Apart from storing and concentrating bile, the gallbladder has no other specific function. The pancreas secretes an isosmotic fluid containing bicarbonate, which helps neutralize the acidic chyme, and several enzymes, including trypsin, chymotrypsin, lipase, and pancreatic amylase, as well as nucleolytic enzymes (deoxyribonuclease and ribonuclease), into the small intestine. Both of these secretory organs aid in digestion.

Embryology

The gut is an endoderm-derived structure. At approximately the sixteenth day of human development, the embryo begins to fold ventrally (with the embryo's ventral surface becoming concave) in two directions: the sides of the embryo fold in on each other and the head and tail fold toward one another. The result is that a piece of the yolk sac, an endoderm-lined structure in contact with the ventral aspect of the embryo, begins to be pinched off to become the primitive gut. The yolk sac remains connected to the gut tube via the vitelline duct. Usually this structure regresses during development; in cases where it does not, it is known as Meckel's diverticulum.

During fetal life, the primitive gut can be divided into three segments: foregut, midgut, and hindgut. Although these terms often are used in reference to segments of the primitive gut, they nevertheless are used regularly to describe components of the definitive gut as well.

Each segment of the gut gives rise to specific gut and gut-related structures in later development. Components derived from the gut proper, including the stomach and colon, develop as swellings or dilatations of the primitive gut. In contrast, gut-related derivatives—that is, those structures that derive from the primitive gut, but are not part of the gut proper—in general develop as outpouchings of the primitive gut. The blood vessels supplying these structures remain constant throughout development.[3]

part part in adult Gives rise to Arterial supply
foregut the pharynx, to the upper duodenum pharynx, esophagus, stomach, upper duodenum, respiratory tract (including the lungs), liver, gallbladder, and pancreas branches of the celiac artery
midgut lower duodenum, to the first two-thirds of the transverse colon lower duodenum, jejunum, ileum, cecum, appendix, ascending colon, and first two-thirds of the transverse colon branches of the superior mesenteric artery
hindgut last third of the transverse colon, to the upper part of the anal canal last third of the transverse colon, descending colon, rectum, and upper part of the anal canal branches of the inferior mesenteric artery

Specialization of organs

Four organs are subject to specialization in the kingdom Animalia:[citation needed]

  • The first organ is the tongue, which is only present in the phylum Chordata.
  • The second organ is the esophagus. In birds, insects, and other invertebrates, the crop is an enlargement of the esophagus that is used to store food temporarily.
  • The third organ is the stomach. In addition to a glandular stomach (proventriculus), birds have a muscular "stomach" called the ventriculus or "gizzard". The gizzard is used to grind up food mechanically.
  • The fourth organ is the large intestine. Non-ruminant herbivores, such as rabbits, have an outpouching of the large intestine called the cecum, which aids in digestion of plant material such as cellulose.

Transit time

The time taken for food or other ingested objects to transit through the gastrointestinal tract varies depending on many factors, but roughly, it takes 2.5 to 3 hours after meal for 50% of stomach contents to empty into the intestines and total emptying of the stomach takes 4 to 5 hours. Subsequently, 50% emptying of the small intestine takes 2.5 to 3 hours. Finally, transit through the colon takes 30 to 40 hours.[4]

Pathology

There are a number of diseases and conditions affecting the gastrointestinal system, including:

Immune function

The gastrointestinal tract also is a prominent part of the immune system.[5] The surface area of the digestive tract is estimated to be the surface area of a football field. With such a large exposure, the immune system must work hard to prevent pathogens from entering into blood and lymph.[6]

The low pH (ranging from 1 to 4) of the stomach is fatal for many microorganisms that enter it. Similarly, mucus (containing IgA antibodies) neutralizes many of these microorganisms. Other factors in the GI tract help with immune function as well, including enzymes in saliva and bile. Enzymes such as Cyp3A4, along with the antiporter activities, also are instrumental in the intestine's role of detoxification of antigens and xenobiotics, such as drugs, involved in first pass metabolism.

Health-enhancing intestinal bacteria serve to prevent the overgrowth of potentially harmful bacteria in the gut. These two types of bacteria compete for space and "food," as there are limited resources within the intestinal tract. A ratio of 80-85% beneficial to 15-20% potentially harmful bacteria generally is considered normal within the intestines. Microorganisms also are kept at bay by an extensive immune system comprising the gut-associated lymphoid tissue (GALT).

Histology

General structure of the gut wall

The gastrointestinal tract has a uniform general histology with some differences that reflect the specialization in functional anatomy.[7] The GI tract can be divided into four concentric layers:

Mucosa

The mucosa is the innermost layer of the gastrointestinal tract that is surrounding the lumen, or space within the tube. This layer comes in direct contact with food (or bolus), and is responsible for absorption and secretion, important processes in digestion.

The mucosa can be divided into:

The mucosae are highly specialized in each organ of the gastrointestinal tract, facing a low pH in the stomach, absorbing a multitude of different substances in the small intestine, and also absorbing specific quantities of water in the large intestine. Reflecting the varying needs of these organs, the structure of the mucosa can consist of invaginations of secretory glands (e.g., gastric pits), or it can be folded in order to increase surface area (examples include

Submucosa

The submucosa consists of a dense irregular layer of connective tissue with large blood vessels, lymphatics, and nerves branching into the mucosa and muscularis externa. It contains Meissner's plexus, an enteric nervous plexus, situated on the inner surface of the muscularis externa.

Muscularis externa

The muscularis externa consists of an inner circular layer and a longitudinal outer muscular layer. The circular muscle layer prevents food from traveling backward and the longitudinal layer shortens the tract. The coordinated contractions of these layers is called peristalsis and propels the bolus, or balled-up food, through the GI tract.

Between the two muscle layers are the myenteric or Auerbach's plexus.

Adventitia

The adventitia consists of several layers of epithelia.

When the adventitia is facing the mesentery or peritoneal fold, the adventitia is covered by a mesothelium supported by a thin connective tissue layer, together forming a serosa, or serous membrane.

See also

Notes

  1. ^ lungs; i hate ms hawkiuns Hopkins, Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright. Human Biology and Health. Prentice Hall. ISBN 0-13-981176-1. 
  2. ^ Nelson RJ. 2005. Introduction to Behavioral Endocrinology. Sinauer Associates: Massachusetts. p 57.
  3. ^ Bruce M. Carlson (2004). Human Embryology and Developmental Biology (3rd ed.). Saint Louis: Mosby. ISBN 0-323-03649-X. 
  4. ^ Colorado State University > Gastrointestinal Transit: How Long Does It Take? Last updated on May 27, 2006. Author: R. Bowen.
  5. ^ Richard Coico, Geoffrey Sunshine, Eli Benjamini (2003). Immunology: a short course. New York: Wiley-Liss. ISBN 0-471-22689-0. 
  6. ^ Animal Physiology textbook
  7. ^ Abraham L. Kierszenbaum (2002). Histology and cell biology: an introduction to pathology. St. Louis: Mosby. ISBN 0-323-01639-1. 

References

External links


The digestive tract is the system of organs within multicellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining matter. The major function of the gastrointestinal tract are ingestion, digestion, absorption, and defecation. The GI tract differs substantially from animal to animal. Some animals have multi-chambered stomachs, while some animals' stomachs contain a single box. In a human adult male, the GI tract is approximately 6.5 meters (20 feet) long and consists of the upper and lower GI tracts. The tract may also be divided into foregut, midgut, and hindgut, reflecting the embryological origin of each segment of the tract.[1]

The remainder of this article focuses on human gastrointestinal anatomy; see digestion for the process in other organisms.

Contents

Upper gastrointestinal tract

The upper Gastrointestinal tract consists of the mouth, pharynx, esophagus, stomach, and duodenum proximal to the [[ligament o the buccal cavity, which contains the openings of the salivary glands; the tongue; and the teeth.

  • Behind the mouth lies the pharynx which prevents food from entering the voice box and leads to a hollow muscular tube, the esophagus.
  • Peristalsis takes place, which is the contraction of muscles to propel the food down the esophagus which extends through the chest and pierces the diaphragm to reach the stomach.

Lower gastrointestinal tract

The lower gastrointestinal tract comprises the most of the intestines and anus.

Accessory organs

Accessory organs to the alimentary canal include the liver, gallbladder, and pancreas. The liver secretes bile into the small intestine via the bile duct, employing the gallbladder as a reservoir. Apart from storing and concentrating bile, the gallbladder has no other specific function. The pancreas secretes an isosmotic fluid containing bicarbonate, which helps neutralize the acidic chyme, and several enzymes, including trypsin, chymotrypsin, lipase, and pancreatic amylase, as well as nucleolytic enzymes (deoxyribonuclease and ribonuclease), into the small intestine. Both of these secretory organs aid in digestion.

Embryology

The gut is an endoderm-derived structure. At approximately the 16th day of human development, the embryo begins to fold ventrally (with the embryo's ventral surface becoming concave) in two directions: the sides of the embryo fold in on each other and the head and tail fold towards one another. The result is that a piece of the yolk sac, an endoderm-lined structure in contact with the ventral aspect of the embryo, begins to be pinched off to become the primitive gut. The yolk sac remains connected to the gut tube via the vitelline duct. Usually this structure regresses during development; in cases where it does not, it is known as Meckel's diverticulum.

During fetal life, the primitive gut can be divided into three segments: foregut, midgut, and hindgut. Although these terms are often used in reference to segments of the primitive gut, they are nevertheless used regularly to describe components of the definitive gut as well.

Each segment of the primitive gut gives rise to specific gut and gut-related structures in the adult. Components derived from the gut proper, including the stomach and colon, develop as swellings or dilatations of the primitive gut. In contrast, gut-related derivatives—that is, those structures that derive from the primitive gut but are not part of the gut proper—in general develop as outpouchings of the primitive gut. The blood vessels supplying these structures remain constant throughout development.[2]

part part in adult Gives rise to Arterial supply
foregut the pharynx, to the upper duodenum pharynx, esophagus, stomach, upper duodenum, respiratory tract (including the lungs), liver, gallbladder, and pancreas branches of the celiac artery
midgut lower duodenum, to the first two-thirds of the transverse colon lower duodenum, jejunum, ileum, cecum, appendix, ascending colon, and first two-thirds of the transverse colon branches of the superior mesenteric artery
hindgut last third of the transverse colon, to the upper part of the anal canal last third of the transverse colon, descending colon, rectum, and upper part of the anal canal branches of the inferior mesenteric artery

Physiology

Specialization of organs

Four organs are subject to specialization in the kingdom Animalia.

  • The first organ is the tongue which is only present in the phylum Chordata.
  • The second organ is the esophagus. The crop is an enlargement of the esophagus in birds, insects, and other invertebrates that is used to store food temporarily.
  • The third organ is the stomach . In addition to a glandular stomach (proventriculus), birds have a muscular "stomach" called the ventriculus or "gizzard." The gizzard is used to mechanically grind up food.
  • The fourth organ is the large intestine. An outpouching of the large intestine called the cecum is present in non-ruminant herbivores such as rabbits. It aids in digestion of plant material such as cellulose

Transit time

The time taken for food or other ingested objects to transit through the gastrointestinal tract varies depending on many factors, but roughly, it takes 2.5 to 3 hours after meal for 50% of stomach contents to empty into the intestines. Total emptying of the stomach takes 4 to 5 hours. Subsequently, 50% emptying of the small intestine takes 2.5 to 3 hours. Finally, transit through the colon takes 30 to 40 hours.[3]

Pathology

There are a number of diseases and conditions affecting the gastrointestinal system, including:

Immune function

The gastrointestinal tract is also a prominent part of the immune system.[4] The surface area of the digestive tract is estimated to be the surface area of a football field. As such, the immune system must work hard to prevent pathogens from entering into blood and lymph.[5] The low pH (ranging from 1 to 4) of the stomach is fatal for many microorganisms that enter it. Similarly, mucus (containing IgA antibodies) neutralizes many of these microorganisms. Other factors in the GI tract help with immune function as well, including enzymes in the saliva and bile. Enzymes such as Cyp3A4, along with the antiporter activities, are also instrumental in the intestine's role of detoxification of antigens and xenobiotics, such as drugs, involved in first pass metabolism. Health-enhancing intestinal bacteria serve to prevent the overgrowth of potentially harmful bacteria in the gut. Microorganisms are also kept at bay by an extensive immune system comprising the gut-associated lymphoid tissue (GALT).

Histology

The gastrointestinal tract has a uniform general histology with some differences which reflect the specialization in functional anatomy.[6] The GI tract can be divided into 4 concentric layers:

Mucosa

The mucosa is the innermost layer of the gastrointestinal tract that is surrounding the lumen, or space within the tube. This layer comes in direct contact with the food (or bolus), and is responsible for absorption and secretion, important processes in digestion.

The mucosa can be divided into:

The mucosae are highly specialized in each organ of the gastrointestinal tract, facing a low pH in the stomach, absorbing a multitude of different substances in the small intestine, and also absorbing specific quantities of water in the large intestine. Reflecting the varying needs of these organs, the structure of the mucosa can consist of invaginations of secretory glands (e.g., gastric pits), or it can be folded in order to increase surface area (examples include villi and plicae circulares).

Submucosa

The submucosa consists of a dense irregular layer of connective tissue with large blood vessels, lymphatics and nerves branching into the mucosa and muscularis. It contains Meissner's plexus, an enteric nervous plexus, situated on the inner surface of the muscularis externa.

Muscularis externa

The muscularis externa consists of an inner circular layer and a longitudinal outer muscular layer. The circular muscle layer prevents the food from going backwards and the longitudinal layer shortens the tract. The coordinated contractions of these layers is called peristalsis and propels the bolus, or balled-up food, through the GI tract. Between the two muscle layers are the myenteric or Auerbach's plexus.

Adventitia

The adventitia consists of several layers of epithelia. When the adventitia is facing the mesentery or peritoneal fold, the adventitia is covered by a mesothelium supported by a thin connective tissue layer, together forming a serosa, or serous membrane.

Uses of animal gut by humans

  • The stomachs of calves have commonly been used as a source of rennet for making cheese.
  • The use of animal gut strings by musicians can be traced back to the third dynasty of Egypt. In the recent past, strings were made out of lamb gut. With the advent of the modern era, musicians have tended to use strings made of silk, or synthetic materials such as nylon or steel. Some instrumentalists, however, still use gut strings in order to evoke the older tone quality. Although such strings were commonly referred to as "catgut" strings, cats were never used as a source for gut strings.
  • Sheep gut was the original source for natural gut string used in racquets, such as for tennis. Today, synthetic strings are much more common, but the best strings are now made out of cow gut.
  • Gut cord has also been used to produce strings for the snares which provide the snare drum's characteristic buzzing timbre. While the snare drum currently almost always uses metal wire rather than gut cord, the North African bendir frame drum still uses gut for this purpose.
  • "Natural" sausage hulls (or casings) are made of animal gut, especially hog, beef, and lamb.
  • Chitterlings, a kind of food, consist of thoroughly washed pig's gut.
  • Animal gut was used to make the cord lines in longcase clocks and for fusee movements in bracket clocks, but may be replaced by metal wire.
  • The oldest known condoms, from 1640 AD, were made from animal intestine.[7]

See also

Notes

  1. ^ lungs; Jean Hopkins, Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright (1993). Human Biology and blood. Englewood Cliffs, New Jersey, USA: Prentice Hall. ISBN 0-13-981176-1. 
  2. ^ Bruce M. Carlson (2004). Human Embryology and Developmental Biology (3rd ed.). Saint Louis: Mosby. ISBN 0-323-03649-X. 
  3. ^ Colorado State University > Gastrointestinal Transit: How Long Does It Take? Last updated on May 27, 2006. Author: R. Bowen.
  4. ^ Richard Coico, Geoffrey Sunshine, Eli Benjamini (2003). Immunology: a short course. New York: Wiley-Liss. ISBN 0-471-22689-0. 
  5. ^ Animal Physiology textbook
  6. ^ Abraham L. Kierszenbaum (2002). Histology and cell biology: an introduction to pathology. St. Louis: Mosby. ISBN 0-323-01639-1. 
  7. ^ "World's oldest condom". Ananova. 2008. http://www.ananova.com/news/story/sm_1870958.html?menu=news.quirkies.sexlife. Retrieved on 2008-04-11. 

References

External links

Digestive Diseases Information Clearinghouse (NDDIC)]


Study guide

Up to date as of January 14, 2010

From Wikiversity

Crystal Clear app kaddressbook.png
Please help develop this page

This page was created, but so far, little content has been added. Everyone is invited to help expand and create educational content for Wikiversity. If you need help learning how to add content, see the editing tutorial and the MediaWiki syntax reference.

To help you get started with content, we have automatically added references below to other Wikimedia Foundation projects. This will help you find materials such as information, media and quotations on which to base the development of "Gastrointestinal tract" as an educational resource. However, please do not simply copy-and-paste large chunks from other projects. You can also use the links in the blue box to help you classify this page by subject, educational level and resource type.

Wikipedia-logo.png Run a search on Gastrointestinal tract at Wikipedia.
Commons-logo.svg Search Wikimedia Commons for images, sounds and other media related to: Gastrointestinal tract
Wikimedia-logo.svg Search for Gastrointestinal tract on the following projects:
Smiley green alien whatface.svg Lost on Wikiversity? Please help by choosing project boxes to classify this resource by:
  • subject
  • educational level
  • resource type

w:Gastrointestinal_tract

The Gastrointestinal Tract (GI) is composed of the alimentary tract from the mouth to the anus. Actually, it is divided in: mouth, pharynx, esophagus, stomach, small intestine and large intestine. The GI tract assumes a vital role in the ingestion, digestion, absorption and excretion of nutrients.








Got something to say? Make a comment.
Your name
Your email address
Message