The Full Wiki

Genetic disorder: Wikis

Advertisements
  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...


More interesting facts on Genetic disorder

Include this on your site/blog:

Encyclopedia

From Wikipedia, the free encyclopedia

Genetic disorder
Classification and external resources
MeSH D030342

A genetic disorder is an illness caused by abnormalities in genes or chromosomes. While some diseases, such as cancer, are due in part to a genetic disorders, they can also be caused by environmental factors. Most disorders are quite rare and affect one person in every several thousands or millions. Some types of recessive gene disorders confer an advantage in the heterozygous state in certain environments.[1]

Contents

Single gene disorder

Prevalence of some single gene disorders[2]
Disorder Prevalence
Autosomal dominant
Familial hypercholesterolemia 1 in 500
Polycystic kidney disease 1 in 1250
Huntington disease 1 in 2,500
Hereditary spherocytosis 1 in 5,000
Marfan syndrome 1 in 20,000
Autosomal recessive
Sickle cell anemia 1 in 625
(African Americans)
Cystic fibrosis 1 in 2,000
(Caucasians)
Tay-Sachs disease 1 in 3,000
(American Jews)
Phenylketonuria 1 in 12,000
Mucopolysaccharidoses 1 in 25,000
Glycogen storage diseases 1 in 50,000
Galactosemia 1 in 57,000
X-linked
Duchenne muscular dystrophy 1 in 7,000
Hemophilia 1 in 10,000
Values are for liveborn infants

A single gene disorder is the result of a single mutated gene. There are estimated to be over 4000 human diseases caused by single gene defects. Single gene disorders can be passed on to subsequent generations in several ways. Genomic imprinting and uniparental disomy, however, may affect inheritance patterns. The divisions between recessive and dominant types are not "hard and fast" although the divisions between autosomal and X-linked types are (since the latter types are distinguished purely based on the chromosomal location of the gene). For example, achondroplasia is typically considered a dominant disorder, but children with two genes for achondroplasia have a severe skeletal disorder that achondroplasics could be viewed as carriers of. Sickle-cell anemia is also considered a recessive condition, but heterozygous carriers have increased immunity to malaria in early childhood, which could be described as a related dominant condition. When a couple where one partner or both are sufferers or carriers of a single gene disorder and wish to have a child they can do so through IVF whichs means they can then have PDG (Pre-Implantation Genetic Diagnosis) to check whether the fertilised egg has had the genetic disorder passed on[citation needed]

Advertisements

Autosomal dominant

Only one mutated copy of the gene will be necessary for a person to be affected by an autosomal dominant disorder. Each affected person usually has one affected parent. There is a 50% chance that a child will inherit the mutated gene. Conditions that are autosomal dominant often have low penetrance, which means that although only one mutated copy is needed, a relatively small proportion of those who inherit that mutation go on to develop the disease. Examples of this type of disorder are Huntington's disease, Neurofibromatosis 1, Marfan Syndrome, Hereditary nonpolyposis colorectal cancer, and Hereditary multiple exostoses, which is a highly penetrant autosomal dominant disorder. Birth defects are also called congenital anomalies.

Autosomal recessive

Two copies of the gene must be mutated for a person to be affected by an autosomal recessive disorder. An affected person usually has unaffected parents who each carry a single copy of the mutated gene (and are referred to as carriers). Two unaffected people who each carry one copy of the mutated gene have a 25% chance with each pregnancy of having a child affected by the disorder. Examples of this type of disorder are cystic fibrosis, sickle-cell disease (also partial sickle-cell disease), Tay-Sachs disease, Niemann-Pick disease, spinal muscular atrophy, and Dry (otherwise known as "rice-brand") earwax.[3]

X-linked dominant

X-linked dominant disorders are caused by mutations in genes on the X chromosome. Only a few disorders have this inheritance pattern, with a prime example being X-linked hypophosphatemic rickets. Males and females are both affected in these disorders, with males typically being more severely affected than females. Some X-linked dominant conditions such as Rett syndrome, Incontinentia Pigmenti type 2 and Aicardi Syndrome are usually fatal in males either in utero or shortly after birth, and are therefore predominantly seen in females. Exceptions to this finding are extremely rare cases in which boys with Klinefelter Syndrome (47,XXY) also inherit an X-linked dominant condition and exhibit symptoms more similar to those of a female in terms of disease severity. The chance of passing on an X-linked dominant disorder differs between men and women. The sons of a man with an X-linked dominant disorder will all be unaffected (since they receive their father's Y chromosome), and his daughters will all inherit the condition. A woman with an X-linked dominant disorder has a 50% chance of having an affected fetus with each pregnancy, although it should be noted that in cases such as Incontinentia Pigmenti only female offspring are generally viable. In addition, although these conditions do not alter fertility per se, individuals with Rett syndrome or Aicardi syndrome rarely reproduce.[citation needed]

X-linked recessive

X-linked recessive conditions are also caused by mutations in genes on the X chromosome. Males are more frequently affected than females, and the chance of passing on the disorder differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected, and his daughters will carry one copy of the mutated gene. A woman who is a carrier of an X-linked recessive disorder (XRXr) has a 50% chance of having sons who are affected and a 50% chance of having daughters who carry one copy of the mutated gene and are therefore carriers. X-linked recessive conditions include the serious diseases Hemophilia A, Duchenne muscular dystrophy, and Lesch-Nyhan syndrome as well as common and less serious conditions such as male pattern baldness and red-green color blindness.

Y-linked

Y-linked disorders are caused by mutations on the Y chromosome. Because males inherit a Y chromosome from their fathers, every son of an affected father will be affected. Because females inherit an X chromosome from their fathers, female offspring of affected fathers are never affected.

Since the Y chromosome is relatively small and contains very few genes, there are relatively few Y-linked disorders.[citation needed] Often the symptoms include infertility, which may be circumvented with the help of some fertility treatments. Examples are Male Infertility and hypertrichosis pinnae.[citation needed]

Mitochondrial

This type of inheritance, also known as maternal inheritance, applies to genes in mitochondrial DNA. Because only egg cells contribute mitochondria to the developing embryo, only mothers can pass on mitochondrial conditions to their children. An example of this type of disorder is Leber's Hereditary Optic Neuropathy.

Multifactorial and polygenic (complex) disorders

Genetic disorders may also be complex, multifactorial or polygenic, this means that they are likely associated with the effects of multiple genes in combination with lifestyle and environmental factors. Multifactoral disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritance. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat because the specific factors that cause most of these disorders have not yet been identified.

On a pedigree, polygenic diseases do tend to “run in families”, but the inheritance does not fit simple patterns as with Mendelian diseases. But this does not mean that the genes cannot eventually be located and studied. There is also a strong environmental component to many of them (e.g., blood pressure).

Prognosis and treatment of genetic disorders

Genetic disorders rarely have effective treatments, though gene therapy is being tested as a possible treatment for some genetic diseases, including retinitis pigmentosa.[4]

  • Gauchers disease is a genetic disease affecting metabolism. It is more treatable then most other genetic diseases, and can be treated with enzyme replacement therapy, medication miglustat, and bone marrow transplantion.[5]

See also

References

  1. ^ WGBH Educational Foundation
  2. ^ Table 7-1 in:Mitchell, Richard Sheppard; Kumar, Vinay; Abbas, Abul K.; Fausto, Nelson (2007). Robbins Basic Pathology. Philadelphia: Saunders. ISBN 1-4160-2973-7.  8th edition.
  3. ^ Wade, Nicholas (January 29, 2006). "Japanese Scientists Identify Ear Wax Gene". New York Times. 
  4. ^ http://emedicine.medscape.com/article/1227488-treatment
  5. ^ http://www.mayoclinic.com/health/gauchers-disease/DS00972/DSECTION=treatments%2Dand%2Ddrugs

External links


Advertisements






Got something to say? Make a comment.
Your name
Your email address
Message