5th  Top people from Doncaster 
12nd  Top logicians 
97th  Top Irish people 
46th  Top ethicists 
George Boole  

George Boole 

Full name  George Boole 
Born  2 November 1815 Lincoln Lincolnshire, England 
Died  8 December 1864 (aged 49) Ballintemple, County Cork, Ireland 
Era  19thcentury philosophy 
Region  Western Philosophy 
School  Mathematical foundations of computer science 
Main interests  Mathematics, Logic, Philosophy of mathematics 
Notable ideas  Boolean algebra 
George Boole (pronounced /ˈbuːl/) (2 November 1815 – 8 December 1864) was an English mathematician and philosopher.
As the inventor of Boolean logic—the basis of modern digital computer logic—Boole is regarded in hindsight as a founder of the field of computer science. Boole said,
... no general method for the solution of questions in the theory of probabilities can be established which does not explicitly recognise ... those universal laws of thought which are the basis of all reasoning ...^{[1]}
Contents 
George Boole's father, John Boole (1779–1848), was a tradesman of limited means, but of "studious character and active mind".^{[2]} Being especially interested in mathematical science and logic, the father gave his son his first lessons; but the extraordinary mathematical talents of George Boole did not manifest themselves in early life. At first, his favorite subject was classics.
It was not until his successful establishment of a school at Lincoln, its removal to Waddington, and later his appointment in 1849 as the first professor of mathematics of then Queen's College, Cork in Ireland (now University College Cork, where the library, underground lecture theatre complex and the Boole Centre for Research in Informatics^{[3]} are named in his honour) that his mathematical skills were fully realized. In 1855 he married Mary Everest (niece of George Everest), who later, as Mrs. Boole, wrote several useful educational works on her husband's principles.
To the broader public Boole was known only as the author of numerous abstruse papers on mathematical topics, and of three or four distinct publications that have become standard works. His earliest published paper was the "Researches in the theory of analytical transformations, with a special application to the reduction of the general equation of the second order." printed in the Cambridge Mathematical Journal in February 1840 (Volume 2, no. 8, pp. 64–73), and it led to a friendship between Boole and D.F. Gregory, the editor of the journal, which lasted until the premature death of the latter in 1844. A long list of Boole's memoirs and detached papers, both on logical and mathematical topics, are found in the Catalogue of Scientific Memoirs published by the Royal Society, and in the supplementary volume on Differential Equations, edited by Isaac Todhunter. To the Cambridge Mathematical Journal and its successor, the Cambridge and Dublin Mathematical Journal, Boole contributed twentytwo articles in all. In the third and fourth series of the Philosophical Magazine are found sixteen papers. The Royal Society printed six important memoirs in the Philosophical Transactions, and a few other memoirs are to be found in the Transactions of the Royal Society of Edinburgh and of the Royal Irish Academy, in the Bulletin de l'Académie de StPétersbourg for 1862 (under the name G Boldt, vol. iv. pp. 198–215), and in Crelle's Journal. Also included is a paper on the mathematical basis of logic, published in the Mechanic's Magazine in 1848. The works of Boole are thus contained in about fifty scattered articles and a few separate publications.
Only two systematic treatises on mathematical subjects were completed by Boole during his lifetime. The wellknown Treatise on Differential Equations appeared in 1859, and was followed, the next year, by a Treatise on the Calculus of Finite Differences, designed to serve as a sequel to the former work. These treatises are valuable contributions to the important branches of mathematics in question. To a certain extent these works embody the more important discoveries of their author. In the sixteenth and seventeenth chapters of the Differential Equations we find, for instance, an account of the general symbolic method, the bold and skilful employment of which led to Boole's chief discoveries, and of a general method in analysis, originally described in his famous memoir printed in the Philosophical Transactions for 1844. Boole was one of the most eminent of those who perceived that the symbols of operation could be separated from those of quantity and treated as distinct objects of calculation. His principal characteristic was perfect confidence in any result obtained by the treatment of symbols in accordance with their primary laws and conditions, and an almost unrivalled skill and power in tracing out these results.
During the last few years of his life Boole was constantly engaged in extending his researches with the object of producing a second edition of his Differential Equations much more complete than the first edition, and part of his last vacation was spent in the libraries of the Royal Society and the British Museum; but this new edition was never completed. Even the manuscripts left at his death were so incomplete that Todhunter, into whose hands they were put, found it impossible to use them in the publication of a second edition of the original treatise, and printed them, in 1865, in a supplementary volume.
With the exception of Augustus De Morgan, Boole was probably the first English mathematician since the time of John Wallis who had also written upon logic. His novel views of logical method were due to the same profound confidence in symbolic reasoning to which he had successfully trusted in mathematical investigation. Speculations concerning a calculus of reasoning had at different times occupied Boole's thoughts, but it was not till the spring of 1847 that he put his ideas into the pamphlet called Mathematical Analysis of Logic. Boole afterwards regarded this as a hasty and imperfect exposition of his logical system, and he desired that his much larger work, An Investigation of the Laws of Thought (1854), on Which are Founded the Mathematical Theories of Logic and Probabilities, should alone be considered as containing a mature statement of his views. This ushered in a new focus on the nature of evidence, argument, and proof. Nevertheless, there is a charm of originality about his earlier logical work that is easy to appreciate.
He did not regard logic as a branch of mathematics, as the title of his earlier pamphlet might be taken to imply, but he pointed out such a deep analogy between the symbols of algebra and those that can be made, in his opinion, to represent logical forms and syllogisms, that we can hardly help saying that (especially his) formal logic is mathematics restricted to the two quantities, 0 and 1. By unity Boole denoted the universe of thinkable objects; literal symbols, such as x, y, z, v, u, etc., were used with the elective meaning attaching to common adjectives and substantives. Thus, if x = horned and y = sheep, then the successive acts of election represented by x and y, if performed on unity, give the whole of the class horned sheep. Boole showed that elective symbols of this kind obey the same primary laws of combination as algebraic symbols, whence it followed that they could be added, subtracted, multiplied and even divided, almost exactly in the same manner as numbers. Thus, (1 – x) would represent the operation of selecting all things in the world except horned things, that is, all not horned things, and (1 – x) (1 – y) would give us all things neither horned nor sheep. By the use of such symbols propositions could be reduced to the form of equations, and the syllogistic conclusion from two premises was obtained by eliminating the middle term according to ordinary algebraic rules.
Still more original and remarkable, however, was that part of his system, fully stated in his Laws of Thought, formed a general symbolic method of logical inference. Given any propositions involving any number of terms, Boole showed how, by the purely symbolic treatment of the premises, to draw any conclusion logically contained in those premises. The second part of the Laws of Thought contained a corresponding attempt to discover a general method in probabilities, which should enable us from the given probabilities of any system of events to determine the consequent probability of any other event logically connected with the given events.
In 1921 the economist John Maynard Keynes published a book that has become a classic on probability theory, "A Treatise of Probability." Keynes's comments about Boole's theory of probability were generally taken to be the definitive statement on the subject. Keynes believed that Boole had made a fundamental error that vitiated much of his analysis. In a recent book, "The Last Challenge Problem," David Miller provides a general method in accord with Boole's system, and attempts to solve the problems recognized earlier by Keynes and others.^{[4]}
Though Boole published little except his mathematical and logical works, his acquaintance with general literature was wide and deep. Dante was his favourite poet, and he preferred the Paradiso to the Inferno. The metaphysics of Aristotle, the ethics of Spinoza, the philosophical works of Cicero, and many kindred works, were also frequent subjects of study. His reflections upon scientific, philosophical and religious questions are contained in four addresses upon The Genius of Sir Isaac Newton, The Right Use of Leisure, The Claims of Science and The Social Aspect of Intellectual Culture, which he delivered and printed at different times.
The personal character of Boole inspired all his friends with the deepest esteem. He was marked by true modesty, and his life was given to the singleminded pursuit of truth. Though he received a medal from the Royal Society for his memoir of 1844, and the honorary degree of LL.D. from the University of Dublin, he neither sought nor received the ordinary rewards to which his discoveries would entitle him. On 8 December 1864, in the full vigour of his intellectual powers, he died of an attack of fever, ending in effusion on the lungs. He is buried in the Church of Ireland cemetery of St Michael's, Church Road, Blackrock (a suburb of Cork City). There is a commemorative plaque inside the adjoining church.
The Booles had five daughters:
Boole's work was extended and refined by William Stanley Jevons, Augustus De Morgan, Charles Sanders Peirce, and William Ernest Johnson. This work was summarized by Ernst Schröder, Louis Couturat, and Clarence Irving Lewis.
Boole's work (as well as that of his intellectual progeny) was relatively obscure, except among logicians. At the time, it appeared to have no practical uses. However, approximately seventy years after Boole's death, Claude Shannon attended a philosophy class at the University of Michigan that introduced him to Boole's studies. Shannon recognised that Boole's work could form the basis of mechanisms and processes in the real world and that it was therefore highly relevant. In 1937 Shannon went on to write a master's thesis at the Massachusetts Institute of Technology, in which he showed how Boolean algebra could optimize the design of systems of electromechanical relays, then used in telephone routing switches. He also proved that circuits with relays could solve Boolean algebra problems. Employing the properties of electrical switches to process logic is the basic concept that underlies all modern electronic digital computers. Victor Shestakov at Moscow State University (1907–1987) proposed a theory of electric switches based on Boolean logic even earlier than Claude Shannon in 1935 on the testimony of Soviet logicians and mathematicians S.A. Yanovskaya, GaazeRapoport, Dobrushin, Lupanov, Medvedev, and Uspensky, though they presented their academic theses in the same year, 1938). But the first publication of Shestakov's result took place only in 1941 (in Russian). Hence Boolean algebra became the foundation of practical digital circuit design; and Boole, via Shannon and Shestakov, provided the theoretical grounding for the Digital Age.^{[5]}
The crater Boole on the Moon is named in his honour.
George Boole (2 November 1815 – 8 December 1864) was an English mathematician and philosopher. As the inventor of Boolean logic, which is the basis of modern digital computer logic, he is regarded in hindsight as one of the founders of the field of computer science.
GEORGE BOOLE (18151864), English logician and mathematician, was born in Lincoln on the 2nd of November 1815. His father was a tradesman of limited means, but of studious character and active mind. Being especially interested in mathematical science, the father gave his son his first lessons; but the extraordinary mathematical powers of George Boole did not manifest themselves in early life. At first his favourite subject was classics. Not until the age of seventeen did he attack the higher mathematics, and his progress was much retarded by the want of efficient help. When about sixteen years of age he became assistantmaster in a private school at Doncaster, and he maintained himself to the end of his life in one grade or other of the scholastic profession. Few distinguished men, indeed, have had a less eventful life. Almost the only changes which can be called events are his successful establishment of a school at Lincoln, its removal to Waddington, his appointment in 1849 as professor of mathematics in the Queen's College at Cork, and his marriage in 1855 to Miss Mary Everest, who, as Mrs Boole, afterwards wrote several useful educational works on her husband's principles.
To the public Boole was known only as the author of numerous abstruse papers on mathematical topics, and of three or four distinct publications which have become standard works. His earliest published paper was one upon the "Theory of Analytical Transformations," printed in the Cambridge Mathematical Journal for 1839, and it led to a friendship between Boole and D. F. Gregory, the editor of the journal, which lasted until the premature death of the latter in 1844. A long list of Boole's memoirs and detached papers, both on logical and mathematical topics, will be found in the Catalogue of Scientific Memoirs published by the Royal Society, and in the supplementary volume on Differential Equations, edited by Isaac Todhunter. To the Cambridge Mathematical Journal and its successor, the Cambridge and Dublin Mathematical Journal, Boole contributed in all twentytwo articles. In the third and fourth series of the Philosophical Magazine will be found sixteen papers. The Royal Society printed six important memoirs in the Philosophical Transactions, and a few other memoirs are to be found in the Transactions of the Royal Society of Edinburgh and of the Royal Irish Academy, in the Bulletin de 1' Academic de StPetersbourg for 1862 (under the name G. Boldt, vol. iv. pp. 198215), and in Crelle's Journal. To these lists should be added a paper on the mathematical basis of logic, published in the Mechanic's Magazine for 1848. The works of Boole are thus contained in about fifty scattered articles and a few separate publications.
Only two systematic treatises on mathematical subjects were completed by Boole during his lifetime. The wellknown Treatise on Differential Equations appeared in 1859, and was followed, the next year, by a Treatise on the Calculus of Finite Differences, designed to serve as a sequel to the former work. These treatises are valuable contributions to the important branches of mathematics in question, and Boole, in composing them, seems to have combined elementary exposition with the profound investigation of the philosophy of the subject in a manner hardly admitting of improvement. To a certain extent these works embody the more important discoveries of their author. In the 16th and 17th chapters of the Differential Equations we find, for instance, a lucid account of the general symbolic method, the bold and skilful employment of which led to Boole's chief discoveries, and of a general method in analysis, originally described in his famous memoir printed in the Philosophical Transactions for 1844. Boole was one of the most eminent of those who perceived that the symbols of operation could be separated from those of quantity and treated as distinct objects of calculation. His principal characteristic was perfect confidence in any result obtained by the treatment of symbols in accordance with their primary laws and conditions, and an almost unrivalled skill and power in tracing out these results.
During the last few years of his life Boole was constantly engaged in extending his researches with the object of producing a second edition of his Differential Equations much more complete than the first edition; and part of his last vacation was spent in the libraries of the Royal Society and the British Museum. But this new edition was never completed. Even the manuscripts left at his death were so incomplete that Todhunter, into whose hands they were put, found it impossible to use them in the publication of a second edition of the original treatise, and wisely printed them, in 1865, in a supplementary volume.
With the exception of Augustus de Morgan, Boole was probably the first English mathematician since the time of John Wallis who had also written upon logic. His novel views of logical method were due to the same profound confidence in symbolic reasoning to which he had successfully trusted in mathematical investigation. Speculations concerning a calculus of reasoning had at different times occupied Boole's thoughts, but it was not till the spring of 1847 that he put his ideas into the pamphlet called Mathematical Analysis of Logic. Boole afterwards regarded this as a hasty and imperfect exposition of his logical system, and he desired that his much larger work, An Investigation of the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities (1854), should alone be considered as containing a mature statement of his views. Nevertheless, there is a charm of originality about his earlier logical work which no competent reader can fail to appreciate. He did not regard logic as a branch of mathematics, as the title of his earlier pamphlet might be taken to imply, but he pointed out such a deep analogy between the symbols of algebra and those which can be made, in his opinion, to represent logical forms and syllogisms, that we can hardly help saying that logic is mathematics restricted to the two quantities, o and 1. By unity Boole denoted the universe of thinkable objects; literal symbols, such as x, y, z, v, u, &c., were used with the elective meaning attaching to common adjectives and substantives. Thus, if x= horned and y = sheep, then the successive acts of election represented by x and y, if performed on unity, give the whole of the class horned sheep. Boole showed that elective symbols of this kind obey the same primary laws of combination as algebraical symbols, whence it followed that they could be added, subtracted, multiplied and even divided, almost exactly in the same manner as numbers. Thus, 1  x would represent the operation of selecting all things in the world except horned things, that is, all not horned things, and (1  x) (1  y) would give us all things neither horned nor sheep. By the use of such symbols propositions could be reduced to the form of equations, and the syllogistic conclusion from two premises was obtained by eliminating the middle term according to ordinary algebraic rules.
Still more original and remarkable, however, was that part of his system, fully stated in his Laws of Thought, which formed a general symbolic method of logical inference. Given any propositions involving any number of terms, Boole showed how, by the purely symbolic treatment of the premises, to draw any conclusion logically contained in those premises. The second part of the Laws of Thought contained a corresponding attempt to discover a general method in probabilities, which should enable us from the given probabilities of any system of events to determine the consequent probability of any other event logically connected with the given events.
Though Boole published little except his mathematical and logical works, his acquaintance with general literature was wide and deep. Dante was his favourite poet, and he preferred the Paradiso to the Inferno. The metaphysics of Aristotle, the ethics of Spinoza, the philosophical works of Cicero, and many kindred works, were also frequent subjects of study. His reflections upon scientific, philosophical and religious questions are contained in four addresses upon The Genius of Sir Isaac Newton, The Right Use of Leisure, The Claims of Science and The Social Aspect of Intellectual Culture, which he delivered and printed at different times.
The personal character of Boole inspired all his friends with the deepest esteem. He was marked by the modesty of true genius, and his life was given to the singleminded pursuit of truth. Though he received a medal from the Royal Society for his memoir of 1844, and the honorary degree of LL.D. from the university of Dublin, he neither sought nor received the ordinary rewards to which his discoveries would entitle him. On the 8th of December 1864, in the full vigour of his intellectual powers, he died of an attack of fever, ending in suffusion on the lungs.
An excellent sketch of his life and works, by the Rev. R. Harley, F.R.S., is to be found in the British Quarterly Review for July 1866, No. 87. (W. S. J.)
<< Bookselling 
Boom >> 
Categories: BOKBOR  Mathematicians  British philosophers
George Boole [buːl], (November 2, 1815 – December 8, 1864) was an English mathematician and philosopher. He created Boolean algebra. This is one of the bases of modernday computer science. Other people, like Augustus De Morgan and Charles Peirce, refined and completed his work. In their times, very few people knew of the work those mathematicians had done. Boolean algebra was rediscovered by Claude Shannon about 75 years after Boole's death. In his doctoral thesis, Shannon showed that boolean algebra was useful. It could simplify the design of electric switches and relays (like those that were used in the telephone switchboards of the time). Shannon also showed that such switches could solve boolean algebra problems. All modernday digital circuits (mainly computers) use such algebra to solve problems.
