The Full Wiki

Glass-reinforced plastic: Wikis

  
  

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Encyclopedia

From Wikipedia, the free encyclopedia

Glass-reinforced plastic or GRP is a composite material made of a plastic matrix reinforced by fine fibers made of glass. It is also known as GFK (for Glass Fiber Komposit), or simply by the name of the reinforcing fibers themselves: fiberglass.

GRP is a lightweight, strong material with very many uses, including boats, automobiles, water tanks, roofing, pipes and cladding.

The plastic matrix may be a thermosetting plastic (most often polyester or vinylester), epoxy or thermoplastic.

Contents

Production

The manufacturing process for GRP fiber glass uses large furnaces to gradually melt the sand/chemical mix to liquid form, then extrude it through bundles of very small orifices (typically 17-25 micrometres in diameter for E-Glass, 9 micrometres for S-Glass). These filaments are then sized with a chemical solution. The individual filaments are now bundled together in large numbers to provide a roving. The diameter of the filaments, as well as the number of filaments in the roving determine its weight. This is typically expressed in yield-yards per pound (how many yards of fiber in one pound of material, thus a smaller number means a heavier roving, example of standard yields are 225yield, 450yield, 675yield) or in tex-grams per km (how many grams 1 km of roving weighs, this is inverted from yield, thus a smaller number means a lighter roving, examples of standard tex are 750tex, 1100tex, 2200tex).

These rovings are then either used directly in a composite application such as pultrusion, filament wounding (pipe), gun roving (automated gun chops the glass into small lengths and drops it into a jet of resin, projected onto the surface of a mold), or used in an intermediary step, to manufacture fabrics such as chopped strand mat (CSM) (made of randomly oriented small cut lengths of fiber all bonded together), woven fabrics, knit fabrics or uni-directional fabrics.

Sizing

A sort of coating, or primer, which both helps protect the glass filaments for processing/manipulation as well as ensure proper bonding to the resin matrix, thus allowing for transfer of shear loads from the glass fibers (which would buckle) to the thermoset plastic (which is quite good at handling shear loads), without this 'bonding', the fibers can 'slip' in the matrix and localised failure will ensue.{{Citation needed|date=August 2009}. Usually also the basic material for making cloth.

Properties

An individual structural glass fiber is both stiff and strong in tension and compression—that is, along its axis. Although it might be assumed that the fiber is weak in compression, it is actually only the long aspect ratio of the fiber which makes it seem so; i.e., because a typical fiber is long and narrow, it buckles easily. On the other hand, the glass fiber is unstiff and unstrong in shear—that is, across its axis. Therefore if a collection of fibers can be arranged permanently in a preferred direction within a material, and if the fibers can be prevented from buckling in compression, then that material will become preferentially strong in that direction.

Furthermore, by laying multiple layers of fiber on top of one another, with each layer oriented in various preferred directions, the stiffness and strength properties of the overall material can be controlled in an efficient manner. In the case of glass-reinforced plastic, it is the plastic matrix which permanently constrains the structural glass fibers to directions chosen by the designer. With chopped strand mat, this directionality is essentially an entire two dimensional plane; with woven fabrics or unidirectional layers, directionality of stiffness and strength can be more precisely controlled within the plane.

A glass-reinforced plastic component is typically of a thin "shell" construction, sometimes filled on the inside with structural foam, as in the case of surfboards. The component may be of nearly arbitrary shape, limited only by the complexity and tolerances of the mold used for manufacturing the shell.

Applications

GRP is an immensely versatile material which combines lightweight with inherent strength to provide a weather resistant finish, with a variety of surface texture and an unlimited colour range available.

GRP was developed in the UK during the Second World War as a replacement for the molded plywood used in aircraft radomes (GRP being transparent to microwaves). Its first main civilian application was for building of boats, where it gained acceptance in the 1950s. Its use has broadened to the automotive and sport equipment sectors as well as model aircraft, although its use there is now partly being taken over by carbon fiber which weighs less per given volume and is stronger both by volume and by weight. GRP uses also include hot tubs, pipes for drinking water and sewers, office plant display containers and flat roof systems.

Advanced manufacturing techniques such as pre-pregs and fiber rovings extend the applications and the tensile strength possible with fiber-reinforced plastics.

GRP is also used in the telecommunications industry for shrouding the visual appearance of antennas, due to its RF permeability and low signal attenuation properties. It may also be used to shroud the visual appearance of other equipment where no signal permeability is required, such as equipment cabinets and steel support structures, due to the ease with which it can be molded, manufactured and painted to custom designs, to blend in with existing structures or brickwork. Other uses include sheet form made electrical insulators and other structural components commonly found in the power industries.

Storage tanks

Storage tanks can be made of GRP with capacities up to about 300 tonnes. The smaller tanks can be made with chopped strand mat cast over a thermoplastic inner tank which acts as a preform during construction. Much more reliable tanks are made using woven mat or filament wound fibre with the fibre orientation at right angles to the hoop stress imposed in the side wall by the contents. They tend to be used for chemical storage because the plastic liner (often polypropylene) is resistant to a wide range of strong chemicals. GRP tanks are also used for septic tanks.

House building

Glass reinforced plastics are also used in the house building market for the production of roofing laminate, door surrounds, over-door canopies, window canopies and dormers, chimneys, coping systems, heads with keystones and sills. The use of GRP for these applications provides for a much faster installation and due to the reduced weight manual handling issues are reduced. With the advent of high volume manufacturing processes it is possible to construct GRP brick effect panels which can be used in the construction of composite housing. These panels can be constructed with the appropriate insulation which reduces heat loss.

Piping

GRP and GRE pipe systems can be used for a variety of applications, above and under the ground.

  • Firewater systems
  • Cooling water systems
  • Drinking water systems
  • Waste water systems/Sewage systems
  • Gas systems

Construction methods

Fiberglass hand lay-up operation

Resin is mixed with a catalyst (e.g. butanox LA) or hardener if working with epoxy, otherwise it will not cure (harden) for days/ weeks. Next, the mold is wetted out with the mixture. The sheets of fiberglass are placed over the mold and rolled down into the mold using steel rollers. The material must be securely attached to the mold, air must not be trapped in between the fiberglass and the mold. Additional resin is applied and possibly additional sheets of fiberglass. Rollers are used to make sure the resin is between all the layers, the glass is wetted throughout the entire thickness of the laminate, and any air pockets are removed. The work must be done quickly enough to complete the job before the resin starts to cure. Various curing times can be achieved by altering the amount of catalyst employed.

Fiberglass spray lay-up operation

The fiberglass spray lay-up process is similar to the hand lay-up process but the difference comes from the application of the fiber and resin material to the mold. Spray-up is an open-molding composites fabrication process where resin and reinforcements are sprayed onto a mold. The resin and glass may be applied separately or simultaneously "chopped" in a combined stream from a chopper gun. Workers roll out the spray-up to compact the laminate. Wood, foam or other core material may then be added, and a secondary spray-up layer imbeds the core between the laminates. The part is then cured, cooled and removed from the reusable mold.

Pultrusion operation

Pultrusion is a manufacturing method used to make strong light weight composite materials, in this case fiberglass. Fibers (the glass material) are pulled from spools through a device that coats them with a resin. They are then typically heat treated and cut to length.[1] Pultrusions can be made in a variety of shapes or cross-sections such as a W or S cross-section. The word pultrusion describes the method of moving the fibers through the machinery. It is pulled through using either a hand over hand method or a continuous roller method. This is opposed to an extrusion which would push the material through dies.

Chopped strand mat

Chopped strand mat or CSM is a form of reinforcement used in glass-reinforced plastic. It consists of glass-fibers laid randomly across each other and held together by a binder.

It is typically processed using the hand lay-up technique, where sheets of material are placed in a mold and brushed with resin. Because the binder dissolves in resin, the material easily conforms to different shapes when wetted out. After the resin cures, the hardened product can be taken from the mold and finished.

Using chopped strand mat gives a glass-reinforced plastic with isotropic in-plane material properties.

Examples of GRP use

Kayaks made of GRP.
  • Sailplanes, kit cars, sports cars, microcars, karts, bodyshells, boats, kayaks, flat roofs, lorries, wind turbine blades.
  • Pods, domes and architectural features where a light weight is necessary.
  • Bodies for automobiles, such as the Chevrolet Corvette and Studebaker Avanti.
  • A320 radome.
  • FRP tanks and vessels: FRP is used extensively to manufacture chemical equipments and tanks and vessels. BS4994 is a British standard related to this application.
  • UHF-broadcasting antennas are often mounted inside a glass-reinforced plastic cylinder on the pinnacle of a broadcasting tower
  • Thinkpads from Lenovo/IBM

References

DeLorean DMC-12 under body is constructed of GRP


Simple English

File:Rutan.variEze.g-veze.
Light composite aircraft

Glass-reinforced plastic (GRP), is a composite material or fiber-reinforced polymer made of a plastic reinforced by fine fibers made of glass. Like carbon fiber reinforced plastic, the composite material is commonly referred to by the name of its reinforcing fibers (fiberglass).

Examples of GRP use

  • Sailplanes, Sports cars, microcars, karts, bodyshells, boats, kayaks, lorries, wind turbine blades.
  • Pods, domes and architectural features where an light weight is necessary.

Other websites








Got something to say? Make a comment.
Your name
Your email address
Message