Gottfried Leibniz: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz
Full name Gottfried Wilhelm Leibniz
Born 1 July 1646
Leipzig, Electorate of Saxony
Died 14 November 1716 (aged 70)
Hanover, Electorate of Hanover
Era 17th-century philosophy
Region Western Philosophy
Main interests Metaphysics, Mathematics, Theodicy
Notable ideas Infinitesimal calculus, Monadology, Theodicy, Optimism
Leibniz formula for pi
Leibniz harmonic triangle
Leibniz formula for determinants
Leibniz integral rule
Principle of sufficient reason
Diagrammatic reasoning
Notation for differentiation
Proof of Fermat's little theorem
Kinetic energy

Gottfried Wilhelm Leibniz (sometimes von Leibniz) (German pronunciation: [ˈgɔtfrit ˈvɪlhɛlm fən ˈlaɪpnɪts]; 1 July 1646 [OS: 21 June] – 14 November 1716) was a German philosopher, polymath and mathematician who wrote primarily in Latin and French.

He occupies a grand place in both the history of philosophy and the history of mathematics. He invented infinitesimal calculus independently of Newton, and his notation has been in general use since then. He also invented the binary system, the foundation of virtually all modern computer architectures. In philosophy, he is mostly remembered for optimism, i.e. his conclusion that our universe is, in a restricted sense, the best possible one God could have made. He was, along with René Descartes and Baruch Spinoza, one of the three greatest 17th-century rationalists and anticipates modern logic and analysis, but his philosophy also looks back to the scholastic tradition, in which logic was an important part. Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in biology, medicine, geology, probability theory, psychology, linguistics, and information science. He also wrote on politics, law, ethics, theology, history, philosophy and philology, even occasional verse. His contributions to this vast array of subjects are scattered in journals and in tens of thousands of letters and unpublished manuscripts. As of 2009, there is no complete edition of Leibniz's writings.[1] The collection of manuscript papers of Leibniz at the Gottfried Wilhelm Leibniz Bibliothek - Niedersächische Landesbibliothek were inscribed on UNESCO’s Memory of the World Register in 2007. [2]




Early life

Gottfried Leibniz was born on 1 July 1646 in Leipzig to Friedrich Leibniz and Catherina Schmuck. His father died when he was six, so he learned his religious and moral values from his mother. These would exert a profound influence on his philosophical thought in later life. As an adult, he often styled himself "von Leibniz", and many posthumous editions of his works gave his name on the title page as "Freiherr [Baron] G. W. von Leibniz." However, no document has been found confirming that he was ever granted a patent of nobility.[3]

Upon the death of his father, a Professor of Moral Philosophy at the University of Leipzig, Leibniz was left with the father's personal library, to which he was granted free access from age seven onwards. While his schoolwork focused on a small canon of authorities, his father's library enabled him to study a wide variety of advanced philosophical and theological works that he would not have otherwise been able to read until his university studies. Access to his father's library accelerated his mastery of Latin. Leibniz was proficient by age 12, composing three hundred hexameters of Latin verse in a single morning for a school celebration at age 13.

He entered his father's university at age 14 and completed a Bachelor's degree in philosophy on 2 December 1662. He defended his Disputatio Metaphysica de Principio Individui, which addressed the Principle of individuation, on 9 June 1663. He soon after took a Master's degree in philosophy on 7 February 1664. He published and defended a dissertation Specimen Quaestionum Philosophicarum ex Jure collectarum, arguing for both a theoretical and a pedagogical relationship between philosophy and law, in December 1664. After two years of legal studies, he was awarded a Bachelor's degree in law on 28 September 1665.

In 1666 (age 20), he published his first book, On the Art of Combinations, the first part of which was also his habilitation thesis in philosophy. His next goal was to obtain a license and doctorate in law, which normally required three years of study. Older students blocked his early graduation plans, leading him to leave Leipzig in September 1666. He enrolled in the University of Altdorf and almost immediately submitted a thesis, which he had likely been writing earlier at Leipzig. The title of the thesis was Disputatio de Casibus perplexis in Jure. Leibniz obtained a license and doctorate in law in November of that year. He then declined an offer of academic appointment at Altdorf, and spent the rest of his life in the service of two major German noble families.


Leibniz's first position was as a salaried alchemist in Nuremberg, even though he knew nothing about the subject. He soon met Johann Christian von Boineburg (1622–1672), the dismissed chief minister of the Elector of Mainz, Johann Philipp von Schönborn. Von Boineburg hired Leibniz as an assistant, and shortly thereafter reconciled with the Elector and introduced Leibniz to him. Leibniz then dedicated an essay on law to the Elector in the hope of obtaining employment. The stratagem worked; the Elector asked Leibniz to assist with the redrafting of the legal code for his Electorate. In 1669, Leibniz was appointed Assessor in the Court of Appeal. Although von Boineburg died late in 1672, Leibniz remained under the employment of his widow until she dismissed him in 1674.

Von Boineburg did much to promote Leibniz's reputation, and the latter's memoranda and letters began to attract favorable notice. Leibniz's service to the Elector soon followed a diplomatic role. He published an essay, under the pseudonym of a fictitious Polish nobleman, arguing (unsuccessfully) for the German candidate for the Polish crown. The main European geopolitical reality during Leibniz's adult life was the ambition of Louis XIV of France, backed by French military and economic might. Meanwhile, the Thirty Years' War had left German-speaking Europe exhausted, fragmented, and economically backward. Leibniz proposed to protect German-speaking Europe by distracting Louis as follows. France would be invited to take Egypt as a stepping stone towards an eventual conquest of the Dutch East Indies. In return, France would agree to leave Germany and the Netherlands undisturbed. This plan obtained the Elector's cautious support. In 1672, the French government invited Leibniz to Paris for discussion, but the plan was soon overtaken by events and became irrelevant. Napoleon's failed invasion of Egypt in 1798 can be seen as an unwitting implementation of Leibniz's plan.

Thus Leibniz began several years in Paris. Soon after arriving, he met Dutch physicist and mathematician Christiaan Huygens and realised that his own knowledge of mathematics and physics was spotty. With Huygens as mentor, he began a program of self-study that soon pushed him to making major contributions to both subjects, including inventing his version of the differential and integral calculus. He met Malebranche and Antoine Arnauld, the leading French philosophers of the day, and studied the writings of Descartes and Pascal, unpublished as well as published. He befriended a German mathematician, Ehrenfried Walther von Tschirnhaus; they corresponded for the rest of their lives.

When it became clear that France would not implement its part of Leibniz's Egyptian plan, the Elector sent his nephew, escorted by Leibniz, on a related mission to the English government in London, early in 1673. There Leibniz came into acquaintance of Henry Oldenburg and John Collins. After demonstrating a calculating machine he had been designing and building since 1670 to the Royal Society , the first such machine that could execute all four basic arithmetical operations, the Society made him an external member. The mission ended abruptly when news reached it of the Elector's death, whereupon Leibniz promptly returned to Paris and not, as had been planned, to Mainz.

The sudden deaths of Leibniz's two patrons in the same winter meant that Leibniz had to find a new basis for his career. In this regard, a 1669 invitation from the Duke of Brunswick to visit Hanover proved fateful. Leibniz declined the invitation, but began corresponding with the Duke in 1671. In 1673, the Duke offered him the post of Counsellor which Leibniz very reluctantly accepted two years later, only after it became clear that no employment in Paris, whose intellectual stimulation he relished, or with the Habsburg imperial court was forthcoming.

House of Hanover, 1676–1716

Leibniz managed to delay his arrival in Hanover until the end of 1676, after making one more short journey to London, where he possibly was shown some of Newton's unpublished work on the calculus.[4] This fact was deemed evidence supporting the accusation, made decades later, that he had stolen the calculus from Newton. On the journey from London to Hanover, Leibniz stopped in The Hague where he met Leeuwenhoek, the discoverer of microorganisms. He also spent several days in intense discussion with Spinoza, who had just completed his masterwork, the Ethics. Leibniz respected Spinoza's powerful intellect, but was dismayed by his conclusions that contradicted both Christian and Jewish orthodoxy.

In 1677, he was promoted, at his request, to Privy Counselor of Justice, a post he held for the rest of his life. Leibniz served three consecutive rulers of the House of Brunswick as historian, political adviser, and most consequentially, as librarian of the ducal library. He thenceforth employed his pen on all the various political, historical, and theological matters involving the House of Brunswick; the resulting documents form a valuable part of the historical record for the period.

Among the few people in north Germany to accept Leibniz were the Electress Sophia of Hanover (1630–1714), her daughter Sophia Charlotte of Hanover (1668–1705), the Queen of Prussia and her avowed disciple, and Caroline of Ansbach, the consort of her grandson, the future George II. To each of these women he was correspondent, adviser, and friend. In turn, they all approved of Leibniz more than did their spouses and the future king George I of Great Britain.[5]

The population of Hanover was only about 10,000, and its provinciality eventually grated on Leibniz. Nevertheless, to be a major courtier to the House of Brunswick was quite an honor, especially in light of the meteoric rise in the prestige of that House during Leibniz's association with it. In 1692, the Duke of Brunswick became a hereditary Elector of the Holy Roman Empire. The British Act of Settlement 1701 designated the Electress Sophia and her descent as the royal family of the United Kingdom, once both King William III and his sister-in-law and successor, Queen Anne, were dead. Leibniz played a role in the initiatives and negotiations leading up to that Act, but not always an effective one. For example, something he published anonymously in England, thinking to promote the Brunswick cause, was formally censured by the British Parliament.

The Brunswicks tolerated the enormous effort Leibniz devoted to intellectual pursuits unrelated to his duties as a courtier, pursuits such as perfecting the calculus, writing about other mathematics, logic, physics, and philosophy, and keeping up a vast correspondence. He began working on the calculus in 1674; the earliest evidence of its use in his surviving notebooks is 1675. By 1677 he had a coherent system in hand, but did not publish it until 1684. Leibniz's most important mathematical papers were published between 1682 and 1692, usually in a journal which he and Otto Mencke founded in 1682, the Acta Eruditorum. That journal played a key role in advancing his mathematical and scientific reputation, which in turn enhanced his eminence in diplomacy, history, theology, and philosophy.

The Elector Ernst August commissioned Leibniz to write a history of the House of Brunswick, going back to the time of Charlemagne or earlier, hoping that the resulting book would advance his dynastic ambitions. From 1687 to 1690, Leibniz traveled extensively in Germany, Austria, and Italy, seeking and finding archival materials bearing on this project. Decades went by but no history appeared; the next Elector became quite annoyed at Leibniz's apparent dilatoriness. Leibniz never finished the project, in part because of his huge output on many other fronts, but also because he insisted on writing a meticulously researched and erudite book based on archival sources, when his patrons would have been quite happy with a short popular book, one perhaps little more than a genealogy with commentary, to be completed in three years or less. They never knew that he had in fact carried out a fair part of his assigned task: when the material Leibniz had written and collected for his history of the House of Brunswick was finally published in the 19th century, it filled three volumes.

In 1711, John Keill, writing in the journal of the Royal Society and with Newton's presumed blessing, accused Leibniz of having plagiarized Newton's calculus. Thus began the calculus priority dispute which darkened the remainder of Leibniz's life. A formal investigation by the Royal Society (in which Newton was an unacknowledged participant), undertaken in response to Leibniz's demand for a retraction, upheld Keill's charge. Historians of mathematics writing since 1900 or so have tended to acquit Leibniz, pointing to important differences between Leibniz's and Newton's versions of the calculus.

In 1711, while traveling in northern Europe, the Russian Tsar Peter the Great stopped in Hanover and met Leibniz, who then took some interest in matters Russian over the rest of his life. In 1712, Leibniz began a two year residence in Vienna, where he was appointed Imperial Court Councillor to the Habsburgs. On the death of Queen Anne in 1714, Elector Georg Ludwig became King George I of Great Britain, under the terms of the 1701 Act of Settlement. Even though Leibniz had done much to bring about this happy event, it was not to be his hour of glory. Despite the intercession of the Princess of Wales, Caroline of Ansbach, George I forbade Leibniz to join him in London until he completed at least one volume of the history of the Brunswick family his father had commissioned nearly 30 years earlier. Moreover, for George I to include Leibniz in his London court would have been deemed insulting to Newton, who was seen as having won the calculus priority dispute and whose standing in British official circles could not have been higher. Finally, his dear friend and defender, the dowager Electress Sophia, died in 1714.

Leibniz died in Hanover in 1716: at the time, he was so out of favor that neither George I (who happened to be near Hanover at the time) nor any fellow courtier other than his personal secretary attended the funeral. Even though Leibniz was a life member of the Royal Society and the Berlin Academy of Sciences, neither organization saw fit to honor his passing. His grave went unmarked for more than 50 years. Leibniz was eulogized by Fontenelle, before the Academie des Sciences in Paris, which had admitted him as a foreign member in 1700. The eulogy was composed at the behest of the Duchess of Orleans, a niece of the Electress Sophia.

Leibniz never married. He complained on occasion about money, but the fair sum he left to his sole heir, his sister's stepson, proved that the Brunswicks had, by and large, paid him well. In his diplomatic endeavors, he at times verged on the unscrupulous, as was all too often the case with professional diplomats of his day. On several occasions, Leibniz backdated and altered personal manuscripts, actions which put him in a bad light during the calculus controversy. On the other hand, he was charming, well-mannered, and not without humor and imagination;[6] he had many friends and admirers all over Europe.


Leibniz's philosophical thinking appears fragmented, because his philosophical writings consist mainly of a multitude of short pieces: journal articles, manuscripts published long after his death, and many letters to many correspondents. He wrote only two philosophical treatises, of which only the Théodicée of 1710 was published in his lifetime.

Leibniz dated his beginning as a philosopher to his Discourse on Metaphysics, which he composed in 1686 as a commentary on a running dispute between Malebranche and Antoine Arnauld. This led to an extensive and valuable correspondence with Arnauld;[7] it and the Discourse were not published until the 19th century. In 1695, Leibniz made his public entrée into European philosophy with a journal article titled "New System of the Nature and Communication of Substances".[8] Between 1695 and 1705, he composed his New Essays on Human Understanding, a lengthy commentary on John Locke's 1690 An Essay Concerning Human Understanding, but upon learning of Locke's 1704 death, lost the desire to publish it, so that the New Essays were not published until 1765. The Monadologie, composed in 1714 and published posthumously, consists of 90 aphorisms.

Leibniz met Spinoza in 1676, read some of his unpublished writings, and has since been suspected of appropriating some of Spinoza's ideas. While Leibniz admired Spinoza's powerful intellect, he was also forthrightly dismayed by Spinoza's conclusions,[9] especially when these were inconsistent with Christian orthodoxy.

Unlike Descartes and Spinoza, Leibniz had a thorough university education in philosophy. His lifelong scholastic and Aristotelian turn of mind betrayed the strong influence of one of his Leipzig professors, Jakob Thomasius, who also supervised his BA thesis in philosophy. Leibniz also eagerly read Francisco Suárez, a Spanish Jesuit respected even in Lutheran universities. Leibniz was deeply interested in the new methods and conclusions of Descartes, Huygens, Newton, and Boyle, but viewed their work through a lens heavily tinted by scholastic notions. Yet it remains the case that Leibniz's methods and concerns often anticipate the logic, and analytic and linguistic philosophy of the 20th century.

The Principles

Leibniz variously invoked one or another of seven fundamental philosophical Principles:[10]

  • Identity/contradiction. If a proposition is true, then its negation is false and vice versa.
  • Identity of indiscernibles. Two things are identical if and only if they share the same and only the same properties. Frequently invoked in modern logic and philosophy. The "identity of indiscernibles" is often referred to as Leibniz's Law. It has attracted the most controversy and criticism, especially from corpuscular philosophy and quantum mechanics.
  • Sufficient reason. "There must be a sufficient reason [often known only to God] for anything to exist, for any event to occur, for any truth to obtain."[11]
  • Pre-established harmony.[12] "[T]he appropriate nature of each substance brings it about that what happens to one corresponds to what happens to all the others, without, however, their acting upon one another directly." (Discourse on Metaphysics, XIV) A dropped glass shatters because it "knows" it has hit the ground, and not because the impact with the ground "compels" the glass to split.
  • Continuity. Natura non saltum facit. A mathematical analog to this principle would proceed as follows: if a function describes a transformation of something to which continuity applies, then its domain and range are both dense sets.
  • Optimism. "God assuredly always chooses the best."[13]
  • Plenitude. "Leibniz believed that the best of all possible worlds would actualize every genuine possibility, and argued in Théodicée that this best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."

Leibniz would on occasion give a speech for a specific principle, but more often took them for granted.[14]

The monads

Leibniz's best known contribution to metaphysics is his theory of monads, as exposited in Monadologie. Monads are to the metaphysical realm what atoms are to the physical/phenomenal. Monads are the ultimate elements of the universe. The monads are "substantial forms of being" with the following properties: they are eternal, indecomposable, individual, subject to their own laws, un-interacting, and each reflecting the entire universe in a pre-established harmony (a historically important example of panpsychism). Monads are centers of force; substance is force, while space, matter, and motion are merely phenomenal.

The ontological essence of a monad is its irreducible simplicity. Unlike atoms, monads possess no material or spatial character. They also differ from atoms by their complete mutual independence, so that interactions among monads are only apparent. Instead, by virtue of the principle of pre-established harmony, each monad follows a preprogrammed set of "instructions" peculiar to itself, so that a monad "knows" what to do at each moment. (These "instructions" may be seen as analogs of the scientific laws governing subatomic particles.) By virtue of these intrinsic instructions, each monad is like a little mirror of the universe. Monads need not be "small"; e.g., each human being constitutes a monad, in which case free will is problematic. God, too, is a monad, and the existence of God can be inferred from the harmony prevailing among all other monads; God wills the pre-established harmony.

Monads are purported to having gotten rid of the problematic:

The monadology was thought arbitrary, even eccentric, in Leibniz's day and since.

Theodicy and optimism

The Théodicée[15] tries to justify the apparent imperfections of the world by claiming that it is optimal among all possible worlds. It must be the best possible and most balanced world, because it was created by a perfect God.

The statement that "we live in the best of all possible worlds" drew scorn, most notably from Voltaire, who lampooned it in his comic novella Candide by having the character Dr. Pangloss (a parody of Leibniz and Maupertuis) repeat it like a mantra. Thus the adjective "Panglossian", which describes one who believes that the world about us is the best possible one.

The mathematician Paul du Bois-Reymond, in his "Leibnizian Thoughts in Modern Science", wrote that Leibniz thought of God as a mathematician:

As is well known, the theory of the maxima and minima of functions was indebted to him for the greatest progress through the discovery of the method of tangents. Well, he conceives God in the creation of the world like a mathematician who is solving a minimum problem, or rather, in our modern phraseology, a problem in the calculus of variations – the question being to determine among an infinite number of possible worlds, that for which the sum of necessary evil is a minimum.

A cautious defense of Leibnizian optimism would invoke certain scientific principles that emerged in the two centuries since his death and that are now thoroughly established: the principle of least action, the conservation of mass, and the conservation of energy. In addition, the modern observations that lead to the Fine-tuned Universe arguments seem to support his view:

  1. The 3+1 dimensional structure of spacetime may be ideal. In order to sustain complexity such as life, a universe probably requires three spatial and one temporal dimension. Most universes deviating from 3+1 either violate some fundamental physical laws, or are impossible. The mathematically richest number of spatial dimensions is also 3 (in the sense of topological nontriviality).
  2. The universe, solar system, and Earth are the "best possible" in that they enable intelligent life to exist. Such life exists on Earth only because the Earth, solar system, and Milky Way possess a number of unusual characteristics.[16]
  3. The most sweeping form of optimism derives from the Anthropic Principle.[17] Physical reality can be seen as grounded in the numerical values of a handful of dimensionless constants, the best known of which are the fine structure constant and the ratio of the rest mass of the proton to the electron. Were the numerical values of these constants to differ by a few percent from their observed values, it is unlikely that the resulting universe would contain complex structures.

Our physical laws, universe, solar system, and home planet are all "best" in the sense that they enable complex structures such as galaxies, stars, and, ultimately, intelligent life. On the other hand, it is also reasonable to believe that life might be more intelligent given some other set of circumstances.

Symbolic thought

Leibniz believed that much of human reasoning could be reduced to calculations of a sort, and that such calculations could resolve many differences of opinion:

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right.[18]

Leibniz's calculus ratiocinator, which resembles symbolic logic, can be viewed as a way of making such calculations feasible. Leibniz wrote memoranda[19] that can now be read as groping attempts to get symbolic logic—and thus his calculus—off the ground. But Gerhard and Couturat did not publish these writings until modern formal logic had emerged in Frege's Begriffsschrift and in writings by Charles Sanders Peirce and his students in the 1880s, and hence well after Boole and De Morgan began that logic in 1847.

Leibniz thought symbols were important for human understanding. He attached so much importance to the invention of good notations that he attributed all his discoveries in mathematics to this. His notation for the infinitesimal calculus is an example of his skill in this regard. C.S. Peirce, a 19th-century pioneer of semiotics, shared Leibniz's passion for symbols and notation, and his belief that these are essential to a well-running logic and mathematics.

But Leibniz took his speculations much further. Defining a character as any written sign, he then defined a "real" character as one that represents an idea directly and not simply as the word embodying the idea. Some real characters, such as the notation of logic, serve only to facilitate reasoning. Many characters well-known in his day, including Egyptian hieroglyphics, Chinese characters, and the symbols of astronomy and chemistry, he deemed not real.[20] Instead, he proposed the creation of a characteristica universalis or "universal characteristic", built on an alphabet of human thought in which each fundamental concept would be represented by a unique "real" character:

It is obvious that if we could find characters or signs suited for expressing all our thoughts as clearly and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in all matters insofar as they are subject to reasoning all that we can do in arithmetic and geometry. For all investigations which depend on reasoning would be carried out by transposing these characters and by a species of calculus.[21]

Complex thoughts would be represented by combining characters for simpler thoughts. Leibniz saw that the uniqueness of prime factorization suggests a central role for prime numbers in the universal characteristic, a striking anticipation of Gödel numbering. Granted, there is no intuitive or mnemonic way to number any set of elementary concepts using the prime numbers. Leibniz's idea of reasoning through a universal language of symbols and calculations however remarkably foreshadows great 20th century developments in formal systems, such Turing completeness, where computation was used to define equivalent universal languages (see Turing equivalence).

Because Leibniz was a mathematical novice when he first wrote about the characteristic, at first he did not conceive it as an algebra but rather as a universal language or script. Only in 1676 did he conceive of a kind of "algebra of thought", modeled on and including conventional algebra and its notation. The resulting characteristic included a logical calculus, some combinatorics, algebra, his analysis situs (geometry of situation), a universal concept language, and more.

What Leibniz actually intended by his characteristica universalis and calculus ratiocinator, and the extent to which modern formal logic does justice to the calculus, may never be established.[22]

Formal logic

Leibniz is the most important logician between Aristotle and 1847, when George Boole and Augustus De Morgan each published books that began modern formal logic. Leibniz enunciated the principal properties of what we now call conjunction, disjunction, negation, identity, set inclusion, and the empty set. The principles of Leibniz's logic and, arguably, of his whole philosophy, reduce to two:

  1. All our ideas are compounded from a very small number of simple ideas, which form the alphabet of human thought.
  2. Complex ideas proceed from these simple ideas by a uniform and symmetrical combination, analogous to arithmetical multiplication.

With regard to the first point, the number of simple ideas is much greater than Leibniz thought. As for the second, logic can indeed be grounded in a symmetrical combining operation, but that operation is analogous to either of addition or multiplication. The formal logic that emerged early in the 20th century also requires, at minimum, unary negation and quantified variables ranging over some universe of discourse.

Leibniz published nothing on formal logic in his lifetime; most of what he wrote on the subject consists of working drafts. In his book History of Western Philosophy, Bertrand Russell went so far as to claim that Leibniz had developed logic in his unpublished writings to a level which was reached only 200 years later.


Although the mathematical notion of function was implicit in trigonometric and logarithmic tables, which existed in his day, Leibniz was the first, in 1692 and 1694, to employ it explicitly, to denote any of several geometric concepts derived from a curve, such as abscissa, ordinate, tangent, chord, and the perpendicular.[23] In the 18th century, "function" lost these geometrical associations.

Leibniz was the first to see that the coefficients of a system of linear equations could be arranged into an array, now called a matrix, which can be manipulated to find the solution of the system, if any. This method was later called Gaussian elimination. Leibniz's discoveries of Boolean algebra and of symbolic logic, also relevant to mathematics, are discussed in the preceding section. A comprehensive scholarly treatment of Leibniz's mathematical writings has yet to be written.


Leibniz is credited, along with Sir Isaac Newton, with the inventing of infinitesimal calculus. According to Leibniz's notebooks, a critical breakthrough occurred on 11 November 1675, when he employed integral calculus for the first time to find the area under the graph of a function y = ƒ(x). He introduced several notations used to this day, for instance the integral sign ∫ representing an elongated S, from the Latin word summa and the d used for differentials, from the Latin word differentia. This ingenious and suggestive notation for the calculus is probably his most enduring mathematical legacy. Leibniz did not publish anything about his calculus until 1684.[24] The product rule of differential calculus is still called "Leibniz's law". In addition, the theorem that tells how and when to differentiate under the integral sign is called the Leibniz integral rule.

Leibniz's approach to the calculus fell well short of later standards of rigor (the same can be said of Newton's). We now see a Leibniz proof as being in truth mostly a heuristic argument mainly grounded in geometric intuition. Leibniz also freely invoked mathematical entities he called infinitesimals, manipulating them in ways suggesting that they had paradoxical algebraic properties. George Berkeley, in a tract called The Analyst and elsewhere, ridiculed this and other aspects of the early calculus, pointing out that natural science grounded in the calculus required just as big of a leap of faith as theology grounded in Christian revelation.

From 1711 until his death, Leibniz's life was envenomed by a long dispute with John Keill, Newton, and others, over whether Leibniz had invented the calculus independently of Newton, or whether he had merely invented another notation for ideas that were fundamentally Newton's.[25]

Modern, rigorous calculus emerged in the 19th century, thanks to the efforts of Augustin Louis Cauchy, Bernhard Riemann, Karl Weierstrass, and others, who based their work on the definition of a limit and on a precise understanding of real numbers. While Cauchy still used infinitesimals as a foundational concept for the calculus, following Weierstrass they were gradually eliminated from calculus, though continued to be studied outside of analysis. Infinitesimals survived in science and engineering, and even in rigorous mathematics, via the fundamental computational device known as the differential. Beginning in 1960, Abraham Robinson worked out a rigorous foundation for Leibniz's infinitesimals, using model theory. The resulting non-standard analysis can be seen as a belated vindication of Leibniz's mathematical reasoning.


Leibniz was the first to use the term analysis situs,[26] later used in the 19th century to refer to what is now known as topology. There are two takes on this situation. On the one hand, Mates, citing a 1954 paper in German by Jacob Freudenthal, argues:

Although for Leibniz the situs of a sequence of points is completely determined by the distance between them and is altered if those distances are altered, his admirer Euler, in the famous 1736 paper solving the Königsberg Bridge Problem and its generalizations, used the term geometria situs in such a sense that the situs remains unchanged under topological deformations. He mistakenly credits Leibniz with originating this concept. is sometimes not realized that Leibniz used the term in an entirely different sense and hence can hardly be considered the founder of that part of mathematics.[27]

But Hirano argues differently, quoting Mandelbrot:

To sample Leibniz' scientific works is a sobering experience. Next to calculus, and to other thoughts that have been carried out to completion, the number and variety of premonitory thrusts is overwhelming. We saw examples in 'packing,'... My Leibniz mania is further reinforced by finding that for one moment its hero attached importance to geometric scaling. In "Euclidis Prota"..., which is an attempt to tighten Euclid's axioms, he states,...: 'I have diverse definitions for the straight line. The straight line is a curve, any part of which is similar to the whole, and it alone has this property, not only among curves but among sets.' This claim can be proved today.[28]

Thus the fractal geometry promoted by Mandelbrot drew on Leibniz's notions of self-similarity and the principle of continuity: natura non facit saltus. We also see that when Leibniz wrote, in a metaphysical vein, that "the straight line is a curve, any part of which is similar to the whole", he was anticipating topology by more than two centuries. As for "packing", Leibniz told to his friend and correspondent Des Bosses to imagine a circle, then to inscribe within it three congruent circles with maximum radius; the latter smaller circles could be filled with three even smaller circles by the same procedure. This process can be continued infinitely, from which arises a good idea of self-similarity. Leibniz's improvement of Euclid's axiom contains the same concept.

Scientist and engineer

Leibniz's writings are currently discussed, not only for their anticipations and possible discoveries not yet recognized, but as ways of advancing present knowledge. Much of his writing on physics is included in Gerhardt's Mathematical Writings.


Leibniz contributed a fair amount to the statics and dynamics emerging about him, often disagreeing with Descartes and Newton. He devised a new theory of motion (dynamics) based on kinetic energy and potential energy, which posited space as relative, whereas Newton felt strongly space was absolute. An important example of Leibniz's mature physical thinking is his Specimen Dynamicum of 1695.[29]

Until the discovery of subatomic particles and the quantum mechanics governing them, many of Leibniz's speculative ideas about aspects of nature not reducible to statics and dynamics made little sense. For instance, he anticipated Albert Einstein by arguing, against Newton, that space, time and motion are relative, not absolute. Leibniz's rule is an important, if often overlooked, step in many proofs in diverse fields of physics. The principle of sufficient reason has been invoked in recent cosmology, and his identity of indiscernibles in quantum mechanics, a field some even credit him with having anticipated in some sense. Those who advocate digital philosophy, a recent direction in cosmology, claim Leibniz as a precursor.

The vis viva

Leibniz's vis viva (Latin for living force) is mv2, twice the modern kinetic energy. He realized that the total energy would be conserved in certain mechanical systems, so he considered it an innate motive characteristic of matter.[30] Here too his thinking gave rise to another regrettable nationalistic dispute. His vis viva was seen as rivaling the conservation of momentum championed by Newton in England and by Descartes in France; hence academics in those countries tended to neglect Leibniz's idea. Engineers eventually found vis viva useful, so that the two approaches eventually were seen as complementary.

Other natural science

By proposing that the earth has a molten core, he anticipated modern geology. In embryology, he was a preformationist, but also proposed that organisms are the outcome of a combination of an infinite number of possible microstructures and of their powers. In the life sciences and paleontology, he revealed an amazing transformist intuition, fueled by his study of comparative anatomy and fossils. One of his principal works on this subject, Protogaea , unpublished in his lifetime, has recently been published in English for the first time. He worked out a primal organismic theory.[31] In medicine, he exhorted the physicians of his time—with some results—to ground their theories in detailed comparative observations and verified experiments, and to distinguish firmly scientific and metaphysical points of view.

Social science

In psychology,[32] he anticipated the distinction between conscious and unconscious states. In public health, he advocated establishing a medical administrative authority, with powers over epidemiology and veterinary medicine. He worked to set up a coherent medical training programme, oriented towards public health and preventive measures. In economic policy, he proposed tax reforms and a national insurance scheme, and discussed the balance of trade. He even proposed something akin to what much later emerged as game theory. In sociology he laid the ground for communication theory.


In 1906, Garland published a volume of Leibniz's writings bearing on his many practical inventions and engineering work. To date, few of these writings have been translated into English. Nevertheless, it is well understood that Leibniz was a serious inventor, engineer, and applied scientist, with great respect for practical life. Following the motto theoria cum praxis, he urged that theory be combined with practical application, and thus has been claimed as the father of applied science. He designed wind-driven propellers and water pumps, mining machines to extract ore, hydraulic presses, lamps, submarines, clocks, etc. With Denis Papin, he invented a steam engine. He even proposed a method for desalinating water. From 1680 to 1685, he struggled to overcome the chronic flooding that afflicted the ducal silver mines in the Harz Mountains, but did not succeed.[33]

Information technology

Leibniz may have been the first computer scientist and information theorist.[34] Early in life, he documented the binary number system (base 2), which is used on computers, then revisited that system throughout his career.[35] He anticipated Lagrangian interpolation and algorithmic information theory. His calculus ratiocinator anticipated aspects of the universal Turing machine. In 1934, Norbert Wiener claimed to have found in Leibniz's writings a mention of the concept of feedback, central to Wiener's later cybernetic theory.

In 1671, Leibniz began to invent a machine that could execute all four arithmetical operations, gradually improving it over a number of years. This "Stepped Reckoner" attracted fair attention and was the basis of his election to the Royal Society in 1673. A number of such machines were made during his years in Hanover, by a craftsman working under Leibniz's supervision. It was not an unambiguous success because it did not fully mechanize the operation of carrying. Couturat reported finding an unpublished note by Leibniz, dated 1674, describing a machine capable of performing some algebraic operations.[36]

Leibniz was groping towards hardware and software concepts worked out much later by Charles Babbage and Ada Lovelace. In 1679, while mulling over his binary arithmetic, Leibniz imagined a machine in which binary numbers were represented by marbles, governed by a rudimentary sort of punched cards.[37] Modern electronic digital computers replace Leibniz's marbles moving by gravity with shift registers, voltage gradients, and pulses of electrons, but otherwise they run roughly as Leibniz envisioned in 1679.


While serving as librarian of the ducal libraries in Hanover and Wolfenbuettel, Leibniz effectively became one of the founders of library science. The latter library was enormous for its day, as it contained more than 100,000 volumes, and Leibniz helped design a new building for it, believed to be the first building explicitly designed to be a library. He also designed a book indexing system in ignorance of the only other such system then extant, that of the Bodleian Library at Oxford University. He also called on publishers to distribute abstracts of all new titles they produced each year, in a standard form that would facilitate indexing. He hoped that this abstracting project would eventually include everything printed from his day back to Gutenberg. Neither proposal met with success at the time, but something like them became standard practice among English language publishers during the 20th century, under the aegis of the Library of Congress and the British Library.

He called for the creation of an empirical database as a way to further all sciences. His characteristica universalis, calculus ratiocinator, and a "community of minds"—intended, among other things, to bring political and religious unity to Europe—can be seen as distant unwitting anticipations of artificial languages (e.g., Esperanto and its rivals), symbolic logic, even the World Wide Web.

Advocate of scientific societies

Leibniz emphasized that research was a collaborative endeavor. Hence he warmly advocated the formation of national scientific societies along the lines of the British Royal Society and the French Academie Royale des Sciences. More specifically, in his correspondence and travels he urged the creation of such societies in Dresden, Saint Petersburg, Vienna, and Berlin. Only one such project came to fruition; in 1700, the Berlin Academy of Sciences was created. Leibniz drew up its first statutes, and served as its first President for the remainder of his life. That Academy evolved into the German Academy of Sciences, the publisher of the ongoing critical edition of his works.[38]

Lawyer, moralist

With the possible exception of Marcus Aurelius, no philosopher has ever had as much experience with practical affairs of state as Leibniz. Leibniz's writings on law, ethics, and politics[39] were long overlooked by English-speaking scholars, but this has changed of late.[40]

While Leibniz was no apologist for absolute monarchy like Hobbes, or for tyranny in any form, neither did he echo the political and constitutional views of his contemporary John Locke, views invoked in support of democracy, in 18th-century America and later elsewhere. The following excerpt from a 1695 letter to Baron J. C. Boineburg's son Philipp is very revealing of Leibniz's political sentiments:

As for.. the great question of the power of sovereigns and the obedience their peoples owe them, I usually say that it would be good for princes to be persuaded that their people have the right to resist them, and for the people, on the other hand, to be persuaded to obey them passively. I am, however, quite of the opinion of Grotius, that one ought to obey as a rule, the evil of revolution being greater beyond comparison than the evils causing it. Yet I recognize that a prince can go to such excess, and place the well-being of the state in such danger, that the obligation to endure ceases. This is most rare, however, and the theologian who authorizes violence under this pretext should take care against excess; excess being infinitely more dangerous than deficiency.[41]

In 1677, Leibniz called for a European confederation, governed by a council or senate, whose members would represent entire nations and would be free to vote their consciences;[42] in doing so, he anticipated the European Union. He believed that Europe would adopt a uniform religion. He reiterated these proposals in 1715.


Leibniz devoted considerable intellectual and diplomatic effort to what would now be called ecumenical endeavor, seeking to reconcile first the Roman Catholic and Lutheran churches, later the Lutheran and Reformed churches. In this respect, he followed the example of his early patrons, Baron von Boineburg and the Duke John Frederick—both cradle Lutherans who converted to Catholicism as adults—who did what they could to encourage the reunion of the two faiths, and who warmly welcomed such endeavors by others. (The House of Brunswick remained Lutheran because the Duke's children did not follow their father.) These efforts included corresponding with the French bishop Jacques-Bénigne Bossuet, and involved Leibniz in a fair bit of theological controversy. He evidently thought that the thoroughgoing application of reason would suffice to heal the breach caused by the Reformation.


Leibniz the philologist was an avid student of languages, eagerly latching on to any information about vocabulary and grammar that came his way. He refuted the belief, widely held by Christian scholars in his day, that Hebrew was the primeval language of the human race. He also refuted the argument, advanced by Swedish scholars in his day, that some sort of proto-Swedish was the ancestor of the Germanic languages. He puzzled over the origins of the Slavic languages, was aware of the existence of Sanskrit, and was fascinated by classical Chinese.

He published the princeps editio (first modern edition) of the late medieval Chronicon Holtzatiae, a Latin chronicle of the County of Holstein.


Leibniz was perhaps the first major European intellect to take a close interest in Chinese civilization, which he knew by corresponding with, and reading other work by, European Christian missionaries posted in China. He concluded that Europeans could learn much from the Confucian ethical tradition. He mulled over the possibility that the Chinese characters were an unwitting form of his universal characteristic. He noted with fascination how the I Ching hexagrams correspond to the binary numbers from 0 to 111111, and concluded that this mapping was evidence of major Chinese accomplishments in the sort of philosophical mathematics he admired.[43]

As polymath

While making his grand tour of European archives to research the Brunswick family history that he never completed, Leibniz stopped in Vienna between May 1688 and February 1689, where he did much legal and diplomatic work for the Brunswicks. He visited mines, talked with mine engineers, and tried to negotiate export contracts for lead from the ducal mines in the Harz mountains. His proposal that the streets of Vienna be lit with lamps burning rapeseed oil was implemented. During a formal audience with the Austrian Emperor and in subsequent memoranda, he advocated reorganizing the Austrian economy, reforming the coinage of much of central Europe, negotiating a Concordat between the Habsburgs and the Vatican, and creating an imperial research library, official archive, and public insurance fund. He wrote and published an important paper on mechanics.

Leibniz also wrote a short paper, first published by Louis Couturat in 1903,[44] summarizing his views on metaphysics. The paper is undated; that he wrote it while in Vienna was determined only in 1999, when the ongoing critical edition finally published Leibniz's philosophical writings for the period 1677–90. Couturat's reading of this paper was the launching point for much 20th-century thinking about Leibniz, especially among analytic philosophers. But after a meticulous study of all of Leibniz's philosophical writings up to 1688—a study the 1999 additions to the critical edition made possible—Mercer (2001) begged to differ with Couturat's reading; the jury is still out.

Posthumous reputation

As a mathematician

When Leibniz died, his reputation was in decline. He was remembered for only one book, the Théodicée, whose supposed central argument Voltaire lampooned in his Candide. Voltaire's depiction of Leibniz's ideas was so influential that many believed it to be an accurate description. Thus Voltaire and his Candide bear some of the blame for the lingering failure to appreciate and understand Leibniz's ideas. Leibniz had an ardent disciple, Christian Wolff, whose dogmatic and facile outlook did Leibniz's reputation much harm. In any event, philosophical fashion was moving away from the rationalism and system building of the 17th century, of which Leibniz had been such an ardent proponent. His work on law, diplomacy, and history was seen as of ephemeral interest. The vastness and richness of his correspondence went unrecognized.

Much of Europe came to doubt that Leibniz had discovered the calculus independently of Newton, and hence his whole work in mathematics and physics was neglected. Voltaire, an admirer of Newton, also wrote Candide at least in part to discredit Leibniz's claim to having discovered the calculus and Leibniz's charge that Newton's theory of universal gravitation was incorrect. The rise of relativity and subsequent work in the history of mathematics has put Leibniz's stance in a more favorable light.

Leibniz's long march to his present glory began with the 1765 publication of the Nouveaux Essais, which Kant read closely. In 1768, Dutens edited the first multi-volume edition of Leibniz's writings, followed in the 19th century by a number of editions, including those edited by Erdmann, Foucher de Careil, Gerhardt, Gerland, Klopp, and Mollat. Publication of Leibniz's correspondence with notables such as Antoine Arnauld, Samuel Clarke, Sophia of Hanover, and her daughter Sophia Charlotte of Hanover, began.

In 1900, Bertrand Russell published a critical study of Leibniz's metaphysics. Shortly thereafter, Louis Couturat published an important study of Leibniz, and edited a volume of Leibniz's heretofore unpublished writings, mainly on logic. While their conclusions, especially Russell's, were subsequently challenged and often dismissed, they made Leibniz somewhat respectable among 20th-century analytical and linguistic philosophers in the English-speaking world (Leibniz had already been of great influence to many Germans such as Bernhard Riemann). For example, Leibniz's phrase salva veritate, meaning interchangeability without loss of or compromising the truth, recurs in Willard Quine's writings. Nevertheless, the secondary English-language literature on Leibniz did not really blossom until after World War II. This is especially true of English speaking countries; in Gregory Brown's bibliography fewer than 30 of the English language entries were published before 1946. American Leibniz studies owe much to Leroy Loemker (1904–85) through his translations and his interpretive essays in LeClerc (1973).

Nicholas Jolley has surmised that Leibniz's reputation as a philosopher is now perhaps higher than at any time since he was alive.[45] Analytic and contemporary philosophy continue to invoke his notions of identity, individuation, and possible worlds, while the doctrinaire contempt for metaphysics, characteristic of analytic and linguistic philosophy, has faded. Work in the history of 17th- and 18th-century ideas has revealed more clearly the 17th-century "Intellectual Revolution" that preceded the better-known Industrial and commercial revolutions of the 18th and 19th centuries. The 17th- and 18th-century belief that natural science, especially physics, differs from philosophy mainly in degree and not in kind, is no longer dismissed out of hand. That modern science includes a "scholastic" as well as a "radical empiricist" element is more accepted now than in the early 20th century. Leibniz's thought is now seen as a major prolongation of the mighty endeavor begun by Plato and Aristotle: the universe and man's place in it are amenable to human reason.

In 1985, the German government created the Leibniz Prize, offering an annual award of 1.55 million euros for experimental results and 770,000 euros for theoretical ones. It is the world's largest prize for scientific achievement.

Leibniz biscuits

Leibniz-Keks, a popular brand of biscuits in Germany, are named after Gottfried Leibniz. These biscuits honour Leibniz because he was a resident of Hanover, where the company is based.[46]

Writings and edition

Leibniz mainly wrote in three languages: scholastic Latin, French and German. During his lifetime, he published many pamphlets and scholarly articles, but only two "philosophical" books, the Combinatorial Art and the Théodicée. (He published numerous pamphlets, often anonymous, on behalf of the House of Brunswick-Lüneburg, most notably the "De jure suprematum" a major consideration of the nature of sovereignty.) One substantial book appeared posthumously, his Nouveaux essais sur l'entendement humain, which Leibniz had withheld from publication after the death of John Locke. Only in 1895, when Bodemann completed his catalogues of Leibniz's manuscripts and correspondence, did the enormous extent of Leibniz's Nachlass become clear: about 15,000 letters to more than 1000 recipients plus more than 40,000 other items. Moreover, quite a few of these letters are of essay length. Much of his vast correspondence, especially the letters dated after 1685, remains unpublished, and much of what is published has been so only in recent decades. The amount, variety, and disorder of Leibniz's writings are a predictable result of a situation he described in a letter as follows:

I cannot tell you how extraordinarily distracted and spread out I am. I am trying to find various things in the archives; I look at old papers and hunt up unpublished documents. From these I hope to shed some light on the history of the [House of] Brunswick. I receive and answer a huge number of letters. At the same time, I have so many mathematical results, philosophical thoughts, and other literary innovations that should not be allowed to vanish that I often do not know where to begin.[47]

The extant parts of the critical edition[48] of Leibniz's writings are organized as follows:

  • Series 1. Political, Historical, and General Correspondence. 21 vols., 1666–1701.
  • Series 2. Philosophical Correspondence. 1 vol., 1663–85.
  • Series 3. Mathematical, Scientific, and Technical Correspondence. 6 vols., 1672–96.
  • Series 4. Political Writings. 6 vols., 1667–98.
  • Series 5. Historical and Linguistic Writings. Inactive.
  • Series 6. Philosophical Writings. 7 vols., 1663–90, and Nouveaux essais sur l'entendement humain.
  • Series 7. Mathematical Writings. 3 vols., 1672–76.
  • Series 8. Scientific, Medical, and Technical Writings. In preparation.

The systematic cataloguing of all of Leibniz's Nachlass began in 1901. It was hampered by two world wars, the Nazi dictatorship (with the Holocaust, which affected a Jewish employee of the project, and other personal consequences), and decades of German division (two states with the cold war's "iron curtain" in between, separating scholars and also scattered portions of his literary estates). The ambitious project has had to deal with seven languages contained in some 200,000 pages of written and printed paper. In 1985 it was reorganized and included in a joint program of German federal and state (Länder) academies. Since then the branches in Potsdam, Münster, Hannover and Berlin have jointly published 25 volumes of the critical edition, with an average of 870 pages, and prepared index and concordance works.

Selected works

The year given is usually that in which the work was completed, not of its eventual publication.


Four important collections of English translations are Wiener (1951), Loemker (1969), Ariew and Garber (1989), and Woolhouse and Francks (1998). The ongoing critical edition of all of Leibniz's writings is Sämtliche Schriften und Briefe.[48]

Famous quotes

For indeed, there is nothing in the intellect which was not in the senses, except the intellect itself. Music is the pleasure the human mind experiences from counting without being aware that it is counting. Nothing exists and nothing happens without a reason why it is so, and not otherwise.

See also


  1. ^ Baird, Forrest E.; Walter Kaufmann (2008). From Plato to Derrida. Upper Saddle River, New Jersey: Pearson Prentice Hall. ISBN 0-13-158591-6.  
  2. ^ "Letters from and to Gottfried Wilhelm Leibniz within the collection of manuscript papers of Gottfried Wilhelm Leibniz". UNESCO Memory of the World Programme. 2008-05-16. Retrieved 2009-12-15.  
  3. ^ Aiton 1985: 312
  4. ^ On the encounter between Newton and Leibniz and a review of the evidence, see Alfred Rupert Hall, Philosophers at War: The Quarrel Between Newton and Leibniz (Cambridge, 2002), pp. 44-69.
  5. ^ For a recent study of Leibniz's correspondence with Sophia Charlotte, see MacDonald Ross (1998).
  6. ^ See Wiener IV.6 and Loemker § 40. Also see a curious passage titled "Leibniz's Philosophical Dream," first published by Bodemann in 1895 and translated on p. 253 of Morris, Mary, ed. and trans., 1934. Philosophical Writings. Dent & Sons Ltd.
  7. ^ Ariew & Garber, 69; Loemker, §§36, 38
  8. ^ Ariew & Garber, 138; Loemker, §47; Wiener, II.4
  9. ^ Ariew & Garber, 272–84; Loemker, §§14, 20, 21; Wiener, III.8
  10. ^ Mates (1986), chpts. 7.3, 9
  11. ^ Loemker 717
  12. ^ See Jolley (1995: 129–31), Woolhouse and Francks (1998), and Mercer (2001).
  13. ^ Loemker 311
  14. ^ For a precis of what Leibniz meant by these and other Principles, see Mercer (2001: 473–84). For a classic discussion of Sufficient Reason and Plenitude, see Lovejoy (1957).
  15. ^ Rutherford (1998) is a detailed scholarly study of Leibniz's theodicy.
  16. ^ See Ward & Brownlee (2000), Morris (2003: chpts. 5,6).
  17. ^ Barrow and Tipler (1986)
  18. ^ The Art of Discovery 1685, Wiener 51
  19. ^ Many of his memoranda are translated in Parkinson 1966.
  20. ^ Loemker, however, who translated some of Leibniz's works into English, said that the symbols of chemistry were real characters, so there is disagreement among Leibniz scholars on this point.
  21. ^ Preface to the General Science, 1677. Revision of Rutherford's translation in Jolley 1995: 234. Also Wiener I.4
  22. ^ A good introductory discussion of the "characteristic" is Jolley (1995: 226–40). An early, yet still classic, discussion of the "characteristic" and "calculus" is Couturat (1901: chpts. 3,4).
  23. ^ Struik (1969), 367
  24. ^ For an English translation of this paper, see Struik (1969: 271–84), who also translates parts of two other key papers by Leibniz on the calculus.
  25. ^ Hall (1980) gives a thorough scholarly discussion of the calculus priority dispute.
  26. ^ Loemker §27
  27. ^ Mates (1986), 240
  28. ^ Mandelbrot (1977), 419. Quoted in Hirano (1997).
  29. ^ Ariew and Garber 117, Loemker §46, W II.5. On Leibniz and physics, see the chapter by Garber in Jolley (1995) and Wilson (1989).
  30. ^ See Ariew and Garber 155–86, Loemker §§53–55, W II.6–7a)
  31. ^ On Leibniz and biology, see Loemker (1969a: VIII).
  32. ^ On Leibniz and psychology, see Loemker (1969a: IX).
  33. ^ Aiton (1985), 107–114, 136
  34. ^ Davis (2000) discusses Leibniz's prophetic role in the emergence of calculating machines and of formal languages.
  35. ^ See Couturat (1901): 473–78.
  36. ^ Couturat (1901), 115
  37. ^ The Reality Club: Wake Up Call for Europe Tech
  38. ^ On Leibniz’s projects for scientific societies, see Couturat (1901), App. IV.
  39. ^ See, for example, Ariew and Garber 19, 94, 111, 193; Riley 1988; Loemker §§2, 7, 20, 29, 44, 59, 62, 65; W I.1, IV.1–3
  40. ^ See (in order of difficulty) Jolley (2005: chpt. 7), Gregory Brown's chapter in Jolley (1995), Hostler (1975), and Riley (1996).
  41. ^ Loemker: 59, fn 16. Translation revised.
  42. ^ Loemker: 58, fn 9
  43. ^ On Leibniz, the I Ching, and binary numbers, see Aiton (1985: 245–48). Leibniz's writings on Chinese civilization are collected and translated in Cook and Rosemont (1994), and discussed in Perkins (2004).
  44. ^ Later translated as Loemker 267 and Woolhouse and Francks 30
  45. ^ Jolley, 217–19
  46. ^ "Bahlsen products FAQ".  
  47. ^ 1695 letter to Vincent Placcius in Gerhardt.
  48. ^ a b See photograph there.


  • Aiton, Eric J., 1985. Leibniz: A Biography. Hilger (UK).
  • Alexander, H G (ed) The Leibniz-Clarke Correspondence. Manchester: Manchester University Press, 1956.
  • Ariew, R & D Garber, 1989. Leibniz: Philosophical Essays. Hackett.
  • Barrow, John D.; Tipler, Frank J. (19 May 1988). The Anthropic Cosmological Principle. foreword by John A. Wheeler. Oxford: Oxford University Press. LC 87-28148. ISBN 9780192821478. Retrieved 31 December 2009.  
  • Cook, Daniel, and Rosemont, Henry Jr., 1994. Leibniz: Writings on China. Open Court.
  • Couturat, Louis, 1901. La Logique de Leibniz. Paris: Felix Alcan.
  • Davis, Martin, 2000. The Universal Computer: The Road from Leibniz to Turing. WW Norton.
  • Du Bois-Reymond, Paul, 18nn. "Leibnizian Thoughts in Modern Science".
  • Grattan-Guinness, Ivor, 1997. The Norton History of the Mathematical Sciences. W W Norton.
  • Hall, A. R., 1980. Philosophers at War: The Quarrel between Newton and Leibniz. Cambridge University Press.
  • Hirano, Hideaki, 1997. "Cultural Pluralism And Natural Law." Unpublished.
  • Hostler, J., 1975. Leibniz's Moral Philosophy. UK: Duckworth.
  • Finster, Reinhard & Gerd van den Heuvel. Gottfried Wilhelm Leibniz. Mit Selbstzeugnissen und Bilddokumenten. 4. Auflage. Rowohlt, Reinbek bei Hamburg 2000 (Rowohlts Monographien, 50481), ISBN 3-499-50481-2.
  • Jolley, Nicholas, ed., 1995. The Cambridge Companion to Leibniz. Cambridge University Press.
  • LeClerc, Ivor, ed., 1973. The Philosophy of Leibniz and the Modern World. Vanderbilt University Press.
  • Loemker, Leroy, 1969 (1956). Leibniz: Philosophical Papers and Letters. Reidel.
  • Lovejoy, Arthur O., 1957 (1936). "Plenitude and Sufficient Reason in Leibniz and Spinoza" in his The Great Chain of Being. Harvard University Press: 144–82. Reprinted in Frankfurt, H. G., ed., 1972. Leibniz: A Collection of Critical Essays. Anchor Books.
  • Mandelbrot, Benoît, 1977. The Fractal Geometry of Nature. Freeman.
  • Mates, Benson, 1986. The Philosophy of Leibniz: Metaphysics and Language. Oxford University Press.
  • Mercer, Christia, 2001. Leibniz's metaphysics: Its Origins and Development. Cambridge University Press.
  • Morris, Simon Conway, 2003. Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press.
  • Perkins, Franklin, 2004. Leibniz and China: A Commerce of Light. Cambridge University Press.
  • Riley, Patrick, 1996. Leibniz's Universal Jurisprudence: Justice as the Charity of the Wise. Harvard University Press.
  • Rutherford, Donald, 1998. Leibniz and the Rational Order of Nature. Cambridge University Press.
  • Ward, P. D., and Brownlee, D., 2000. Rare Earth: Why Complex Life is Uncommon in the Universe. Springer Verlag.
  • Struik, D. J., 1969. A Source Book in Mathematics, 1200–1800. Harvard University Press.
  • Wiener, Philip, 1951. Leibniz: Selections. Scribner.
  • Wilson, Catherine, 1989. 'Leibniz's Metaphysics. Princeton University Press.
  • Woolhouse, R.S., and Francks, R., 1998. Leibniz: Philosophical Texts. Oxford University Press.
  • Zalta, E. N., 2000. "A (Leibnizian) Theory of Concepts", Philosophiegeschichte und logische Analyse / Logical Analysis and History of Philosophy 3: 137–183.

External links


Up to date as of January 14, 2010

From Wikiquote

TO LOVE is to find pleasure in the happiness of others.

Gottfried Wilhelm von Leibniz (1 July 1646 {21 June O.S.} – 14 November 1716) was a German philosopher and mathematician.


JUSTICE is charity in accordance with wisdom.
Everything that is possible demands to exist.
Every substance is as a world apart, independent of everything else except God.
I am convinced that the unwritten knowledge scattered among men of different callings surpasses in quantity and in importance anything we find in books, and that the greater part of our wealth has yet to be recorded.
Although the whole of this life were said to be nothing but a dream and the physical world nothing but a phantasm, I should call this dream or phantasm real enough, if, using reason well, we were never deceived by it.
We never have a full demonstration, although there is always an underlying reason for the truth, even if it is only perfectly understood by God, who alone penetrated the infinite series in one stroke of the mind.
  • Theologus: Amare autem?
    Philosophus: Felicitate alterius delectari.
    • Theologian: But what is to love?
      Philosopher: To be delighted by the happiness of another.
    • Confessio philosophi (1673)
  • To love is to be delighted by the happiness of someone, or to experience pleasure upon the happiness of another. I define this as true love.
  • Omne possibile exigit existere.
    • Everything that is possible demands to exist.
    • De veritatibus primis (1686)
  • Chaque substance est comme un monde à part, indépendant de toute autre chose, hors de Dieu...
  • TO LOVE is to find pleasure in the happiness of others. Thus the habit of loving someone is nothing other than BENEVOLENCE by which we want the good of others, not for the profit that we gain from it, but because it is agreeable to us in itself.
    CHARITY is a general benevolence. And JUSTICE is charity in accordance with wisdom. ... so that one does not do harm to someone without necessity, and that one does as much good as one can, but especially where it is best employed.
  • Pour ce qui est des connaissances non-écrites qui se trouvent dispersées parmi les hommes de différents professions, je suis persuadé qu’ils passent de beaucoup tant à l'égard de la multitude que de l'importance, tout ce qui se trouve marqué dans les livres, et que la meilleure partie de notre trésor n'est pas encore enregistrée.
  • [The consequences of] beliefs that go against the providence of a perfectly good, wise, and just God, or against that immortality of souls which lays them open to the operations of justice.... I even find that somewhat similar opinions, by stealing gradually into the minds of men of high station who rule the rest and on whom affairs depend, and by slithering into fashionable books, are inclining everything toward the universal revolution with which Europe is threatened, and are completing the destruction of what still remains in the world of the generous Greeks and Romans who placed love of country and of the public good, and the welfare of future generations before fortune and even before life.
    • Nouveaux essais sur l'entendement humain (1704)
  • Il y a deux labyrinthes fameux où notre raison s’égare bien souvent : l'un regarde la grande question du libre et du nécessaire, surtout dans la production et dans l'origine du mal ; l'autre consiste dans la discussion de la continuité et des indivisibles qui en paraissent les éléments, et où doit entrer la considération de l'infini.
    • There are two famous labyrinths where our reason very often goes astray. One concerns the great question of the free and the necessary, above all in the production and the origin of Evil. The other consists in the discussion of continuity, and of the indivisibles which appear to be the elements thereof, and where the consideration of the infinite must enter in.
    • Essais de Théodicée: Préface (1710)
  • Musica est exercitium arithmeticae occultum nescientis se numerare animi.
    • Music is a hidden arithmetic exercise of the soul, which does not know that it is counting.
    • Letter to Christian Goldbach, April 17, 1712.
    • Arthur Schopenhauer paraphrased this quotation in the first book of Die Welt als Wille und Vorstellung: Musica est exercitium metaphysices occultum nescientis se philosophari animi. (Music is a hidden metaphysical exercise of the soul, which does not know that it is philosophizing.)
  • J'ay marqué plus d'une fois, que je tenois l'espace pour quelque chose de purement relatif, comme le temps; pour un ordre des coëxistences, comme le temps est un ordre des successions.
    • I have said more than once, that I hold space to be something purely relative, as time; an order of coexistences, as time is an order of successions.
    • Third letter to Samuel Clarke, February 25, 1716
  • Although the whole of this life were said to be nothing but a dream and the physical world nothing but a phantasm, I should call this dream or phantasm real enough, if, using reason well, we were never deceived by it.
    • As quoted in The World of Mathematics (1956) by J. R. Newman, p. 1832
  • De quelque manière que Dieu aurait créé le monde, il aurait toujours été régulier et dans un certain ordre général. Mais Dieu a choisi celui qui est le plus parfait, c’est-à-dire celui qui est en même temps le plus simple en hypothèses et le plus riche en phénomènes...
    • In whatever manner God created the world, it would always have been regular and in a certain general order. God, however, has chosen the most perfect, that is to say, the one which is at the same time the simplest in hypothesis and the richest in phenomena.
      • Discours de métaphysique (1686); Leibniz famously tried to show that ours is the best of all possible worlds (see also Monadologie 53 & 54, below). These attempts were mercilessly parodied in Voltaire's Candide. Quotations from Voltaire's novel are often mistakenly attributed to Leibniz. Other statements by Leibniz upon the subject include these:
    • S'il n'y avait pas le meilleur (optimum) parmi tous les mondes possibles, Dieu n'en aurait produit aucun.
      • If there were no best among all possible worlds, God would not have created one.
        • Théodicée (1710)
    • I do not believe that a world without evil, preferable in order to ours, is possible; otherwise it would have been preferred. It is necessary to believe that the mixture of evil has produced the greatest possible good: otherwise the evil would not have been permitted.
      The combination of all the tendencies to the good has produced the best; but as there are goods that are incompatible together, this combination and this result can introduce the destruction of some good, and as a result some evil.
  • Ce miracle de l'Analyse, prodige du monde des idées, objet presque amphibie entre l'Être et le Non-être, que nous appelons racine imaginaire.
    • This miracle of analysis, this marvel of the world of ideas, an almost amphibian object between Being and Non-being that we call the imaginary number.
    • Quoted in Singularités : individus et relations dans le système de Leibniz (2003) by Christiane Frémont
  • We never have a full demonstration, although there is always an underlying reason for the truth, even if it is only perfectly understood by God, who alone penetrated the infinite series in one stroke of the mind.

The Monadology (1714)

It is in a simple substance, and not in a compound or in a machine, that perception must be sought for.
As every present state of a simple substance is naturally a consequence of its preceding state, so its present is pregnant with its future.
There are two kinds of truths: those of reasoning and those of fact. The truths of reasoning are necessary and their opposite is impossible; the truths of fact are contingent and their opposites are possible.
  • On est obligé d’ailleurs de confesser que la Perception et ce qui en dépend, est inexplicable par des raisons mécaniques, c’est-à-dire par les figures et par les mouvements. Et feignant qu'il y ait une Machine, dont la structure fasse penser, sentir, avoir perception ; on pourra la concevoir agrandie en conservant les mêmes proportions, en sorte qu’on y puisse entrer, comme dans un moulin. Et cela posé, on ne trouvera en la visitant au dedans, que des pièces, qui poussent les unes les autres, et jamais de quoi expliquer une perception. Ainsi c'est dans la substance simple, et non dans le composé, ou dans la machine qu’il la faut chercher.
    • Moreover, it must be confessed that perception and that which depends upon it are inexplicable on mechanical grounds, that is to say, by means of figures and motions. And supposing there were a machine, so constructed as to think, feel, and have perception, it might be conceived as increased in size, while keeping the same proportions, so that one might go into it as into a mill. That being so, we should, on examining its interior, find only parts which work one upon another, and never anything by which to explain a perception. Thus it is in a simple substance, and not in a compound or in a machine, that perception must be sought for.
    • La monadologie (17).
  • Et comme tout présent état d'une substance simple est naturellement une suite de son état précédent, tellement, que le présent y est gros de l'avenir.
    • And as every present state of a simple substance is naturally a consequence of its preceding state, so its present is pregnant with its future.
    • La monadologie (22).
  • Il y a aussi deux sortes de vérités, celles de Raisonnement et celle de Fait. Les vérités de Raisonnement sont nécessaires et leur opposé est impossible, et celles de Fait sont contingentes et leur opposé est possible.
    • There are two kinds of truths: those of reasoning and those of fact. The truths of reasoning are necessary and their opposite is impossible; the truths of fact are contingent and their opposites are possible.
    • La monadologie (33).
  • Or, comme il y a une infinité d'univers possibles dans les idées de Dieu, et qu'il n'en peut exister qu'un seul, il faut qu'il y ait une raison suffisante du choix de Dieu qui le détermine à l'un plutôt qu'à l'autre. Et cette raison ne peut se trouver que dans la convenance, dans les degrés de perfection que ces mondes contiennent, chaque possible ayant droit de prétendre à l'existence à mesure de la perfection qu'il enveloppe.
    • Now, as there is an infinity of possible universes in the Ideas of God, and as only one of them can exist, there must be a sufficient reason for God's choice, which determines him toward one rather than another. And this reason can be found only in the fitness, or the degrees of perfection, that these worlds contain, since each possible thing has the right to claim existence in proportion to the perfection it involves.
    • La monadologie (53 & 54).
  • Ainsi on peut dire que non seulement l'âme, miroir d'un univers indestructible, est indestructible, mais encore l'animal même, quoique sa machine périsse souvent en partie, et quitte ou prenne des dépouilles organiques.
    • Thus it may be said that not only the soul, the mirror of an indestructible universe, is indestructible, but also the animal itself, though its mechanism may often perish in part and take off or put on an organic slough.
    • La monadologie (77).
    • Sometimes paraphrased as: The soul is the mirror of an indestructible universe.

External links

Wikipedia has an article about:

Source material

Up to date as of January 22, 2010
(Redirected to Author:Gottfried Leibniz article)

From Wikisource

Gottfried Wilhelm Leibniz
See biography, media, quotes, indexes. Polymathic genius, with major contributions to mathematics, physics, philosophy, theology, and early computer science; independent inventor of calculus in mathematics; inventor of energy and the action principle in physics; diplomat, librarian; worked in vain towards reunification of Catholic and Protestant faiths.
Gottfried Wilhelm Leibniz


Works about Leibniz

PD-icon.svg Works by this author published before January 1, 1923 are in the public domain worldwide because the author died at least 100 years ago. Translations or editions published later may be copyrighted. Posthumous works may be copyrighted based on how long they have been published in certain countries and areas.

Simple English

Gottfried Wilhelm Leibniz
File:Gottfried Wilhelm von
Gottfried Wilhelm Leibniz
Full name Gottfried Wilhelm Leibniz
Born 1 July 1646
Leipzig, Electorate of Saxony
Died 14 November 1716 (aged 70)
Hanover, Electorate of Hanover
Era 17th-century philosophy
Region Western Philosophy
Main interests Metaphysics, Mathematics, Theodicy
Notable ideas Infinitesimal calculus, Monadology, Theodicy, Optimism
Leibniz formula for pi
Leibniz harmonic triangle
Leibniz formula for determinants
Leibniz integral rule
Principle of sufficient reason
Diagrammatic reasoning
Notation for differentiation
Proof of Fermat's little theorem
Kinetic energy
Signature File:Leibnitz

Gottfried Wilhelm Leibniz (also Leibnitz or von Leibniz)[1] (July 1 (June 21 OS) 1646November 14 1716) was a German scientist who wrote mostly in French and Latin.

He was taught law and philosophy. He served as factotum to two major German noble houses (one becoming the British royal family while he served it). Leibniz played a major role in the European politics and diplomacy of his day. He has an equally large place in both the history of philosophy and the history of mathematics. He invented calculus independently of Newton, and his notation is the one in general use since then. He also invented the binary system, foundation of virtually all modern computers.

In philosophy, he is most remembered for optimism. His conclusion is that our universe is, in a restricted sense, the best possible one God could have made. He was one of the great 17th century rationalists. Many people see René Descartes and Baruch Spinoza as the other two. His philosophy also both looks back to the Scholastic tradition and anticipates modern logic and analysis.

Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in biology, medicine, geology, probability theory, psychology, and information science. He also wrote on politics, law, ethics, theology, history, and philology. Sometimes he even wrote in verse. His contributions to this vast array of subjects are scattered in journals and in tens of thousands of letters and unpublished manuscripts.As of 2006, there is no complete edition of Leibniz's writings, and a complete account of his accomplishments is not yet possible.


  1. IPA pronunciation: /'laɪpnɪts/.
mrj:Лейбниц, Готфрид Вильгельм

rue:Ґотфрід Вільгельм Лейбніц


Got something to say? Make a comment.
Your name
Your email address