Hawking radiation (also known as BekensteinHawking radiation) is a thermal radiation with a black body spectrum predicted to be emitted by black holes due to quantum effects. It is named after the physicist Stephen Hawking who provided the theoretical argument for its existence in 1974, and sometimes also after the physicist Jacob Bekenstein who predicted that black holes should have a finite, nonzero temperature and entropy. Hawking's work followed his visit to Moscow in 1973 where Soviet scientists Yakov Zeldovich and Alexander Starobinsky showed him that according to the quantum mechanical uncertainty principle, rotating black holes should create and emit particles.^{[1]} The Hawking radiation process reduces the mass of the black hole and is therefore also known as black hole evaporation.
Because Hawking radiation allows black holes to lose mass, black holes that lose more matter than they gain through other means are expected to dissipate, shrink, and ultimately vanish. Smaller micro black holes (MBHs) are predicted to be larger net emitters of radiation than larger black holes; thus, they tend to shrink and dissipate faster.^{[citation needed]}
Hawking's analysis became the first convincing insight into a possible theory of quantum gravity. However, the existence of Hawking radiation has never been observed. In June 2008, NASA launched the GLAST satellite, which will search for the terminal gammaray flashes expected from evaporating primordial black holes. In speculative large extra dimension theories, CERN's Large Hadron Collider may be able to create micro black holes and observe their evaporation.^{[2]}^{[3]}^{[4]}^{[5]}^{[6]}
Contents 
Black holes are sites of immense gravitational attraction into which surrounding matter is drawn by gravitational forces. Classically, the gravitation is so powerful that nothing, not even electromagnetic radiation, can escape from the black hole. It is yet unknown how gravity can be incorporated into quantum mechanics, but nevertheless far from the black hole the gravitational effects can be weak enough that calculations can be reliably performed in the framework of quantum field theory in curved spacetime. Hawking showed that quantum effects allow black holes to emit exact black body radiation, which is the average thermal radiation emitted by an idealized thermal source known as a black body. The electromagnetic radiation is as if it were emitted by a black body with a temperature that is inversely proportional to the black hole's mass.
Physical insight on the process may be gained by imagining that particleantiparticle radiation is emitted from just beyond the event horizon. This radiation does not come directly from the black hole itself, but rather is a result of virtual particles being "boosted" by the black hole's gravitation into becoming real particles.
A slightly more precise, but still much simplified, view of the process is that vacuum fluctuations cause a particleantiparticle pair to appear close to the event horizon of a black hole. One of the pair falls into the black hole whilst the other escapes. In order to preserve total energy, the particle that fell into the black hole must have had a negative energy (with respect to an observer far away from the black hole). By this process, the black hole loses mass, and, to an outside observer, it would appear that the black hole has just emitted a particle. In reality, the process is a quantum tunneling effect, whereby particleantiparticle pairs will form from the vacuum, and one will tunnel outside the event horizon.
An important difference between the black hole radiation as computed by Hawking and thermal radiation emitted from a black body is that the latter is statistical in nature, and only its average satisfies what is known as Planck's law of black body radiation, while the former satisfies this law exactly. Thus thermal radiation contains information about the body that emitted it, while Hawking radiation seems to contain no such information, and depends only on the mass, angular momentum, and charge of the black hole (the nohair theorem). This leads to the black hole information paradox.
However, according to the conjectured gaugegravity duality (also known as the AdS/CFT correspondence), black holes in certain cases (and perhaps in general) are equivalent to solutions of quantum field theory at a nonzero temperature. This means that no information loss is expected in black holes (since no such loss exists in the quantum field theory), and the radiation emitted by a black hole is probably a usual thermal radiation. If this is correct, then Hawking's original calculation should be corrected, though it is not known how (see below).
As an example, a black hole of one solar mass has a temperature of only 60 nanokelvin; in fact, such a black hole would absorb far more cosmic microwave background radiation than it emits. A black hole of 4.5 × 10^{22} kg (about the mass of the Moon) would be in equilibrium at 2.7 kelvin, absorbing as much radiation as it emits. Yet smaller primordial black holes would emit more than they absorb, and thereby lose mass.
The transPlanckian problem is the observation that Hawking's original calculation requires talking about quantum particles in which the wavelength becomes shorter than the Planck length near the black hole horizon. It is due to the peculiar behavior near a gravitational horizon where time stops as measured from far away. A particle emitted from a black hole with a finite frequency, if traced back to the horizon, must have had an infinite frequency there and a transPlanckian wavelength.
The Unruh effect and the Hawking effect both talk about field modes in the superficially stationary spacetime that change frequency relative to other coordinates which are regular across the horizon. This is necessarily so, since to stay outside a horizon requires acceleration which constantly Doppler shifts the modes.
An outgoing Hawking radiated photon, if the mode is traced back in time, has a frequency which diverges from that which it has at great distance, as it gets closer to the horizon, which requires the wavelength of the photon to "scrunch up" infinitely at the horizon of the black hole. In a maximally extended external Schwarzschild solution, that photon's frequency only stays regular if the mode is extended back into the past region where no observer can go. That region doesn't seem to be observable and is physically suspect, so Hawking used a black hole solution without a past region which forms at a finite time in the past. In that case, the source of all the outgoing photons can be identified–it is a microscopic point right at the moment that the black hole first formed.
The quantum fluctuations at that tiny point, in Hawking's original calculation, contain all the outgoing radiation. The modes that eventually contain the outgoing radiation at long times are redshifted by such a huge amount by their long sojourn next to the event horizon, that they start off as modes with a wavelength much shorter than the Planck length. Since the laws of physics at such short distances are unknown, some find Hawking's original calculation unconvincing.^{[7]}^{[8]}^{[9]}^{[10]}^{[11]}^{[12]}
The transPlanckian problem is nowadays mostly considered a mathematical artifact of horizon calculations.^{[10]}^{[13]} The same effect occurs for regular matter falling onto a white hole solution. Matter which falls on the white hole accumulates on it, but has no future region into which it can go. Tracing the future of this matter, it is compressed onto the final singular endpoint of the white hole evolution, into a transPlanckian region. The reason for these types of divergences is that modes which end at the horizon from the point of view of outside coordinates are singular in frequency there. The only way to determine what happens classically is to extend in some other coordinates that cross the horizon.
There exist alternative physical pictures which give the Hawking radiation in which the transPlanckian problem is addressed. The key point is that similar transPlanckian problems occur when the modes occupied with Unruh radiation are traced back in time.^{[14]} In the Unruh effect, the magnitude of the temperature can be calculated from ordinary Minkowski field theory, and is not controversial.
Hawking radiation is required by the Unruh effect and the equivalence principle applied to black hole horizons. Close to the event horizon of a black hole, a local observer must accelerate to keep from falling in. An accelerating observer sees a thermal bath of particles that pop out of the local acceleration horizon, turn around, and freefall back in. The condition of local thermal equilibrium implies that the consistent extension of this local thermal bath has a finite temperature at infinity, which implies that some of these particles emitted by the horizon are not reabsorbed and become outgoing Hawking radiation.^{[14]}
A Schwarzschild black hole has a metric
The black hole is the background spacetime for a quantum field theory.
The field theory is defined by a local path integral, so if the boundary conditions at the horizon are determined, the state of the field outside will be specified. To find the appropriate boundary conditions, consider a stationary observer just outside the horizon at position r = 2M + u^{2} / 2M. The local metric to lowest order is:
which is Rindler in terms of τ = t / 4M and ρ = 2u. The metric describes a frame that is accelerating to keep from falling into the black hole. The local acceleration diverges as .
The horizon is not a special boundary, and objects can fall in. So the local observer should feel accelerated in ordinary Minkowski space by the principle of equivalence. The nearhorizon observer must see the field excited at a local inverse temperature
the Unruh effect.
The gravitational redshift is by the square root of the time component of the metric. So for the field theory state to consistently extend, there must be a thermal background everywhere with the local temperature redshiftmatched to the near horizon temperature:
The inverse temperature redshifted to r' at infinity is
and r is the nearhorizon position, near 2M, so this is really:
So a field theory defined on a black hole background is in a thermal state whose temperature at infinity is:
which can be expressed more cleanly in terms of the surface gravity of the black hole, the parameter that determines the acceleration of a nearhorizon observer.
in natural units with G, c, and k equal to 1, and where κ is the surface gravity of the horizon. So a black hole can only be in equilibrium with a gas of radiation at a finite temperature. Since radiation incident on the black hole is absorbed, the black hole must emit an equal amount to maintain detailed balance. The black hole acts as a perfect blackbody radiating at this temperature.
In engineering units, the radiation from a Schwarzschild black hole is blackbody radiation with temperature:
where is the reduced Planck constant, c is the speed of light, k is the Boltzmann constant, G is the gravitational constant, and M is the mass of the black hole.
From the black hole temperature, it is straightforward to calculate the black hole entropy. The change in entropy when a quantity of heat dQ is added is:
the heat energy that enters serves increases the total mass:
The radius of a black hole is twice its mass in natural units, so the entropy of a black hole is proportional to its surface area:
Assuming that a small black hole has zero entropy, the integration constant is zero. Forming a black hole is the most efficient way to compress mass into a region, and this entropy is also a bound on the information content of any sphere in space time. The form of the result strongly suggests that the physical description of a gravitating theory can be somehow encoded onto a bounding surface.
When particles escape, the black hole loses a small amount of its energy and therefore of its mass (mass and energy are related by Einstein's equation E = mc²).
The power emitted by a black hole in the form of Hawking radiation can easily be estimated for the simplest case of a nonrotating, noncharged Schwarzschild black hole of mass M. Combining the formulas for the Schwarzschild radius of the black hole, the StefanBoltzmann law of blackbody radiation, the above formula for the temperature of the radiation, and the formula for the surface area of a sphere (the black hole's event horizon), equation derivation:
Hawking radiation temperature:
Schwarzschild sphere surface area of Schwarzschild radius r_{s}:
Stefan–Boltzmann power law:
A black hole is a perfect blackbody:
Stefan–BoltzmannSchwarzschildHawking black hole radiation power law derivation:
Stefan–BoltzmannSchwarzschildHawking power law:
Where P is the energy outflow, is the reduced Planck constant, c is the speed of light, and G is the gravitational constant. It is worth mentioning that the above formula has not yet been derived in the framework of semiclassical gravity. Mario Rabinowitz discovered the simplest possible representation for Hawking Radiation in terms of the black hole density ρ:
The power in the Hawking radiation from a solar mass () black hole turns out to be a minuscule 9 × 10^{−29} watts. It is indeed an extremely good approximation to call such an object 'black'.
Under the assumption of an otherwise empty universe, so that no matter or cosmic microwave background radiation falls into the black hole, it is possible to calculate how long it would take for the black hole to dissipate:
Given that the power of the Hawking radiation is the rate of evaporation energy loss of the black hole:
Since the total energy E of the black hole is related to its mass M by Einstein's massenergy formula:
We can then equate this to our above expression for the power:
This differential equation is separable, and we can write:
The black hole's mass is now a function M(t) of time t. Integrating over M from M_{0} (the initial mass of the black hole) to zero (complete evaporation), and over t from zero to :
The evaporation time of a black hole is proportional to the cube of its mass:
The time that the black hole takes to dissipate is:
Where M_{0} is the mass of the black hole.
The lower classical quantum limit for mass for this equation is equivalent to the Planck mass, m_{P}.
Planck mass quantum black hole Hawking radiation evaporation time:
Where t_{P} is the Planck time.
For a black hole of one solar mass ( = 1.98892 × 10^{30} kg), we get an evaporation time of 2.098 × 10^{67} years—much longer than the current age of the universe at 13.73 ± 0.12 x 10^{9} years.
But for a black hole of 10^{11} kg, the evaporation time is 2.667 billion years. This is why some astronomers are searching for signs of exploding primordial black holes.
However, since the universe contains the cosmic microwave background radiation, in order for the black hole to dissipate, it must have a temperature greater than that of the presentday blackbody radiation of the universe of 2.7 K = 2.3 × 10^{−4} eV. This implies that M must be less than 0.8% of the mass of the Earth.^{[15]}
In common units,
So, for instance, a 1secondlived black hole has a mass of 2.28 × 10^{5} kg, equivalent to an energy of 2.05 × 10^{22} J that could be released by 5 × 10^{6} megatons of TNT. The initial power is 6.84 × 10^{21} W.
Black hole evaporation has several significant consequences:
Formulae from the previous section are only applicable if laws of gravity are approximately valid all the way down to the Planck scale. In particular, for black holes with masses below Planck mass (~10^{−5} g), they result in unphysical lifetimes below Planck time (~10^{−43} s). This is normally seen as an indication that Planck mass is the lower limit on the mass of a black hole.
In the model with large extra dimensions, values of Planck constants can be radically different, and formulas for Hawking radiation have to be modified as well. In particular, the lifetime of a micro black hole (with radius below the scale of extra dimensions) is given by
where M _{*} is the low energy scale (which could be as low as a few TeV), and n is the number of large extra dimensions. This formula is now consistent with black holes as light as a few TeV, with lifetimes on the order of "new Planck time" ~10^{−26} s.
A detailed study of the quantum geometry of a black hole horizon has been made using Loop quantum gravity. Loopquantization reproduces the result for black hole entropy originally discovered by Bekenstein and Hawking. Further, it led to the computation of quantum gravity corrections to the entropy and radiation of black holes.
Based on the fluctuations of the horizon area, a quantum black hole exhibits deviations from the Hawking spectrum that would be observable were xrays from Hawking radiation of evaporating primordial black holes to be observed. The deviation is such that the Hawking radiation is expected to be centered at a set of discrete and unblended energies.
Under experimentally achievable conditions for gravitational systems this effect is too small to be observed. Recent work^{[16]} shows that if one takes an accelerated observer to be an electron circularly orbiting in a constant external magnetic field, then the experimentally verified SokolovTernov effect coincides with the Unruh effect, which is in close connection with the Hawking radiation.
Hawking radiation (also known as BekensteinHawking radiation) is a thermal radiation with a black body spectrum predicted to be emitted by black holes due to quantum effects. It is named after the physicist Stephen Hawking, who provided the theoretical argument for its existence in 1974, and sometimes also after the physicist Jacob Bekenstein^{[1]} who predicted that black holes should have a finite, nonzero temperature and entropy. Hawking's work followed his visit to Moscow in 1973 where Soviet scientists Yakov Zeldovich and Alexander Starobinsky showed him that according to the quantum mechanical uncertainty principle, rotating black holes should create and emit particles.^{[2]} The Hawking radiation process reduces the mass of the black hole and is therefore also known as black hole evaporation.
Because Hawking radiation allows black holes to lose mass, black holes that lose more matter than they gain through other means are expected to dissipate, shrink, and ultimately vanish. Smaller micro black holes (MBHs) are predicted to be larger net emitters of radiation than larger black holes; thus, they tend to shrink and dissipate faster.
Hawking's analysis became the first convincing insight into a possible theory of quantum gravity. In September 2010, Hawking radiation has been claimed to be observed. Other projects have been launched to seek this radiation. In June 2008, NASA launched the GLAST satellite, which will search for the terminal gammaray flashes expected from evaporating primordial black holes. In speculative large extra dimension theories, CERN's Large Hadron Collider may be able to create micro black holes and observe their evaporation.^{[3]}^{[4]}^{[5]}^{[6]}^{[7]}
Contents 
Black holes are sites of immense gravitational attraction. Classically, the gravitation is so powerful that nothing, not even electromagnetic radiation, can escape from the black hole. It is yet unknown how gravity can be incorporated into quantum mechanics, but nevertheless far from the black hole the gravitational effects can be weak enough for calculations to be reliably performed in the framework of quantum field theory in curved spacetime. Hawking showed that quantum effects allow black holes to emit exact black body radiation, which is the average thermal radiation emitted by an idealized thermal source known as a black body. The electromagnetic radiation is as if it were emitted by a black body with a temperature that is inversely proportional to the black hole's mass.
Physical insight on the process may be gained by imagining that particleantiparticle radiation is emitted from just beyond the event horizon. This radiation does not come directly from the black hole itself, but rather is a result of virtual particles being "boosted" by the black hole's gravitation into becoming real particles.
A slightly more precise, but still much simplified, view of the process is that vacuum fluctuations cause a particleantiparticle pair to appear close to the event horizon of a black hole. One of the pair falls into the black hole whilst the other escapes. In order to preserve total energy, the particle that fell into the black hole must have had a negative energy (with respect to an observer far away from the black hole). By this process, the black hole loses mass, and, to an outside observer, it would appear that the black hole has just emitted a particle. In another model, the process is a quantum tunneling effect, whereby particleantiparticle pairs will form from the vacuum, and one will tunnel outside the event horizon.
An important difference between the black hole radiation as computed by Hawking and thermal radiation emitted from a black body is that the latter is statistical in nature, and only its average satisfies what is known as Planck's law of black body radiation, while the former fits the data better. Thus thermal radiation contains information about the body that emitted it, while Hawking radiation seems to contain no such information, and depends only on the mass, angular momentum, and charge of the black hole (the nohair theorem). This leads to the black hole information paradox.
However, according to the conjectured gaugegravity duality (also known as the AdS/CFT correspondence), black holes in certain cases (and perhaps in general) are equivalent to solutions of quantum field theory at a nonzero temperature. This means that no information loss is expected in black holes (since no such loss exists in the quantum field theory), and the radiation emitted by a black hole is probably the usual thermal radiation. If this is correct, then Hawking's original calculation should be corrected, though it is not known how (see below).
As an example, a black hole of one solar mass has a temperature of only 60 nanokelvin; in fact, such a black hole would absorb far more cosmic microwave background radiation than it emits. A black hole of 4.5 × 10^{22} kg (about the mass of the Moon) would be in equilibrium at 2.7 kelvin, absorbing as much radiation as it emits. Yet smaller primordial black holes would emit more than they absorb, and thereby lose mass.
The transPlanckian problem is the observation that Hawking's original calculation requires talking about quantum particles in which the wavelength becomes shorter than the Planck length near the black hole's horizon. It is due to the peculiar behavior near a gravitational horizon where time stops as measured from far away. A particle emitted from a black hole with a finite frequency, if traced back to the horizon, must have had an infinite frequency there and a transPlanckian wavelength.
The Unruh effect and the Hawking effect both talk about field modes in the superficially stationary spacetime that change frequency relative to other coordinates which are regular across the horizon. This is necessarily so, since to stay outside a horizon requires acceleration which constantly Doppler shifts the modes.
An outgoing Hawking radiated photon, if the mode is traced back in time, has a frequency which diverges from that which it has at great distance, as it gets closer to the horizon, which requires the wavelength of the photon to "scrunch up" infinitely at the horizon of the black hole. In a maximally extended external Schwarzschild solution, that photon's frequency only stays regular if the mode is extended back into the past region where no observer can go. That region doesn't seem to be observable and is physically suspect, so Hawking used a black hole solution without a past region which forms at a finite time in the past. In that case, the source of all the outgoing photons can be identified–it is a microscopic point right at the moment that the black hole first formed.
The quantum fluctuations at that tiny point, in Hawking's original calculation, contain all the outgoing radiation. The modes that eventually contain the outgoing radiation at long times are redshifted by such a huge amount by their long sojourn next to the event horizon, that they start off as modes with a wavelength much shorter than the Planck length. Since the laws of physics at such short distances are unknown, some find Hawking's original calculation unconvincing.^{[8]}^{[9]}^{[10]}^{[11]}^{[12]}^{[13]}
The transPlanckian problem is nowadays mostly considered a mathematical artifact of horizon calculations.^{[11]}^{[14]} The same effect occurs for regular matter falling onto a white hole solution. Matter which falls on the white hole accumulates on it, but has no future region into which it can go. Tracing the future of this matter, it is compressed onto the final singular endpoint of the white hole evolution, into a transPlanckian region. The reason for these types of divergences is that modes which end at the horizon from the point of view of outside coordinates are singular in frequency there. The only way to determine what happens classically is to extend in some other coordinates that cross the horizon.
There exist alternative physical pictures which give the Hawking radiation in which the transPlanckian problem is addressed. The key point is that similar transPlanckian problems occur when the modes occupied with Unruh radiation are traced back in time.^{[15]} In the Unruh effect, the magnitude of the temperature can be calculated from ordinary Minkowski field theory, and is not controversial.
Hawking radiation is required by the Unruh effect and the equivalence principle applied to black hole horizons. Close to the event horizon of a black hole, a local observer must accelerate to keep from falling in. An accelerating observer sees a thermal bath of particles that pop out of the local acceleration horizon, turn around, and freefall back in. The condition of local thermal equilibrium implies that the consistent extension of this local thermal bath has a finite temperature at infinity, which implies that some of these particles emitted by the horizon are not reabsorbed and become outgoing Hawking radiation.^{[15]}
A Schwarzschild black hole has a metric
ds^2 = \left(1{2M\over r}\right)dt^2 + {1\over 1{2M\over r}} dr^2 + r^2 d\Omega^2 \;
The black hole is the background spacetime for a quantum field theory.
The field theory is defined by a local path integral, so if the boundary conditions at the horizon are determined, the state of the field outside will be specified. To find the appropriate boundary conditions, consider a stationary observer just outside the horizon at position $r\; =\; 2M\; +\; u^2/2M$. The local metric to lowest order is:
ds^2 =  {u^2\over 4M^2} dt^2 + 4 du^2 + dX_\perp^2 =  \rho^2 d\tau^2 + d\rho^2 + dX_\perp^2 \;
which is Rindler in terms of $\backslash tau=t/4M$ and $\backslash rho=2u$. The metric describes a frame that is accelerating to keep from falling into the black hole. The local acceleration diverges as $u\backslash rightarrow\; 0$.
The horizon is not a special boundary, and objects can fall in. So the local observer should feel accelerated in ordinary Minkowski space by the principle of equivalence. The nearhorizon observer must see the field excited at a local inverse temperature
the Unruh effect.
The gravitational redshift is by the square root of the time component of the metric. So for the field theory state to consistently extend, there must be a thermal background everywhere with the local temperature redshiftmatched to the near horizon temperature:
The inverse temperature redshifted to r' at infinity is
and $r$ is the nearhorizon position, near 2$M$, so this is really:
So a field theory defined on a black hole background is in a thermal state whose temperature at infinity is:
which can be expressed more cleanly in terms of the surface gravity of the black hole, the parameter that determines the acceleration of a nearhorizon observer.
in natural units with $G$, $c$, $\backslash hbar$ and $k$ equal to 1, and where $\backslash kappa$ is the surface gravity of the horizon. So a black hole can only be in equilibrium with a gas of radiation at a finite temperature. Since radiation incident on the black hole is absorbed, the black hole must emit an equal amount to maintain detailed balance. The black hole acts as a perfect blackbody radiating at this temperature.
In engineering units, the radiation from a Schwarzschild black hole is blackbody radiation with temperature:
where $\backslash hbar$ is the reduced Planck constant, c is the speed of light, k is the Boltzmann constant, G is the gravitational constant, and M is the mass of the black hole.
From the black hole temperature, it is straightforward to calculate the black hole entropy. The change in entropy when a quantity of heat dQ is added is:
the heat energy that enters serves increases the total mass:
The radius of a black hole is twice its mass in natural units, so the entropy of a black hole is proportional to its surface area:
Assuming that a small black hole has zero entropy, the integration constant is zero. Forming a black hole is the most efficient way to compress mass into a region, and this entropy is also a bound on the information content of any sphere in space time. The form of the result strongly suggests that the physical description of a gravitating theory can be somehow encoded onto a bounding surface.
When particles escape, the black hole loses a small amount of its energy and therefore of its mass (mass and energy are related by Einstein's equation E = mc²).
The power emitted by a black hole in the form of Hawking radiation can easily be estimated for the simplest case of a nonrotating, noncharged Schwarzschild black hole of mass $M$. Combining the formulas for the Schwarzschild radius of the black hole, the StefanBoltzmann law of blackbody radiation, the above formula for the temperature of the radiation, and the formula for the surface area of a sphere (the black hole's event horizon), equation derivation:
Stefan–Boltzmann constant:
Hawking radiation temperature:
$T\; =\; \backslash frac\{\backslash hbar\; c^3\}\{8\; \backslash pi\; G\; M\; k\_B\}\; \backslash ;$ 
Schwarzschild sphere surface area of Schwarzschild radius $r\_s$:
Stefan–Boltzmann power law:
A black hole is a perfect blackbody:
Stefan–BoltzmannSchwarzschildHawking black hole radiation power law derivation:
Stefan–BoltzmannSchwarzschildHawking power law:
$P\; =\; \backslash frac\{\backslash hbar\; c^6\}\{15360\; \backslash pi\; G^2\; M^2\}\; \backslash ;$ 
Where $P$ is the energy outflow, $\backslash hbar$ is the reduced Planck constant, $c$ is the speed of light, and $G$ is the gravitational constant. It is worth mentioning that the above formula has not yet been derived in the framework of semiclassical gravity.
The power in the Hawking radiation from a solar mass ($M\_\{\backslash odot\}$) black hole turns out to be a minuscule 9 × 10^{−29} watts. It is indeed an extremely good approximation to call such an object 'black'.
Under the assumption of an otherwise empty universe, so that no matter or cosmic microwave background radiation falls into the black hole, it is possible to calculate how long it would take for the black hole to dissipate:
Given that the power of the Hawking radiation is the rate of evaporation energy loss of the black hole:
Since the total energy E of the black hole is related to its mass M by Einstein's massenergy formula:
We can then equate this to our above expression for the power:
This differential equation is separable, and we can write:
The black hole's mass is now a function M(t) of time t. Integrating over M from $M\_0$ (the initial mass of the black hole) to zero (complete evaporation), and over t from zero to $t\_\{\backslash operatorname\{ev\}\}\; \backslash ;$:
The evaporation time of a black hole is proportional to the cube of its mass:
The time that the black hole takes to dissipate is:
$t\_\{\backslash operatorname\{ev\}\}\; =\; \backslash frac\{5120\; \backslash pi\; G^2\; M\_0^\{3\}\}\{\backslash hbar\; c^4\}\; \backslash ;$ 
$\backslash approx\; 1.33*10^\{17\}\; M\_0^3\; \backslash frac\{s\}\{kg^3\}\; \backslash ;$
Where $M\_0$ is the mass of the black hole.
The lower classical quantum limit for mass for this equation is equivalent to the Planck mass, $m\_P$.
Planck mass quantum black hole Hawking radiation evaporation time:
$t\_\{\backslash operatorname\{ev\}\}\; =\; 5120\; \backslash pi\; \backslash sqrt\{\backslash frac\{\backslash hbar\; G\}\{c^5\}\}\; \backslash ;$ 
Where $t\_P$ is the Planck time.
For a black hole of one solar mass ($M\_\{\backslash odot\}$ = 1.98892 × 10^{30} kg), we get an evaporation time of 2.098 × 10^{67} years—much longer than the current age of the universe at 13.73 ± 0.12 x 10^{9 }years.
But for a black hole of 10^{11} kg, the evaporation time is 2.667 billion years. This is why some astronomers are searching for signs of exploding primordial black holes.
However, since the universe contains the cosmic microwave background radiation, in order for the black hole to dissipate, it must have a temperature greater than that of the presentday blackbody radiation of the universe of 2.7 K = 2.3 × 10^{−4} eV. This implies that $M$ must be less than 0.8% of the mass of the Earth.^{[16]}
In common units,
\ \ \approx\ 2.66 \times 10^{24} \left[\frac{M_0}{\mathrm{kg}}\right]^3 \mathrm{yr} \;
\ \ \approx\ 7.2 \times 10^7 \left[\frac{t_\mathrm{ev}}{\mathrm{yr}}\right]^{1/3} \mathrm{kg} \;
So, for instance, a 1secondlived black hole has a mass of 2.28 × 10^{5} kg, equivalent to an energy of 2.05 × 10^{22} J that could be released by 5 × 10^{6} megatons of TNT. The initial power is 6.84 × 10^{21} W.
Black hole evaporation has several significant consequences:
Formulae from the previous section are only applicable if laws of gravity are approximately valid all the way down to the Planck scale. In particular, for black holes with masses below Planck mass (~10^{−5} g), they result in unphysical lifetimes below Planck time (~10^{−43} s). This is normally seen as an indication that Planck mass is the lower limit on the mass of a black hole.
In the model with large extra dimensions, values of Planck constants can be radically different, and formulas for Hawking radiation have to be modified as well. In particular, the lifetime of a micro black hole (with radius below the scale of extra dimensions) is given by
where $M\_*$ is the low energy scale (which could be as low as a few TeV), and n is the number of large extra dimensions. This formula is now consistent with black holes as light as a few TeV, with lifetimes on the order of "new Planck time" ~10^{−26} s.
A detailed study of the quantum geometry of a black hole horizon has been made using Loop quantum gravity. Loopquantization reproduces the result for black hole entropy originally discovered by Bekenstein and Hawking. Further, it led to the computation of quantum gravity corrections to the entropy and radiation of black holes.
Based on the fluctuations of the horizon area, a quantum black hole exhibits deviations from the Hawking spectrum that would be observable were xrays from Hawking radiation of evaporating primordial black holes to be observed. The deviation is such that the Hawking radiation is expected to be centered at a set of discrete and unblended energies.
Under experimentally achievable conditions for gravitational systems this effect is too small to be observed directly. However, a recent experiemental setup created a laboratory "white hole event horizon" that the experimenters claimed was shown to radiate Hawking radiation.^{[17]} Some scientists predict that Hawking radiation could be studied by analogy using sonic black holes, in which sound perturbations are analogous to light in a gravitational black hole and the flow of an approximately perfect fluid is analogous to gravity.^{[18]}
Hawking radiation observed
Named from the English physicist Stephen Hawking.
Plural 
Hawking radiation (uncountable)
