A helix (pl: helixes or helices) is a type of space curve, i.e. a smooth curve in threedimensional space. It is characterised by the fact that the tangent line at any point makes a constant angle with a fixed line called the axis. Examples of helixes are coil springs and the handrails of spiral staircases. A "filledin" helix – for example, a spiral ramp – is called a helicoid.^{[1]} Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ.
Contents 
Helices can be either righthanded or lefthanded. With the line of sight along the helix's axis, if a clockwise screwing motion moves the helix away from the observer, then it is called a righthanded helix; if towards the observer then it is a lefthanded helix. Handedness (or chirality) is a property of the helix, not of the perspective: a righthanded helix cannot be turned or flipped to look like a lefthanded one unless it is viewed in a mirror, and vice versa.
Most hardware screws are righthanded helices. The alpha helix in biology as well as the A and B forms of DNA are also righthanded helices. The Z form of DNA is lefthanded.
The pitch of a helix is the width of one complete helix turn, measured parallel to the axis of the helix.
A double helix consists of two (typically congruent) helices with the same axis, differing by a translation along the axis, which may or may not measure half the pitch.^{[2]}
A conic helix may be defined as a spiral on a conic surface, with the distance to the apex an exponential function of the angle indicating direction from the axis. An example is the Corkscrew roller coaster at Cedar Point amusement park.
A circular helix has constant band curvature and constant torsion.
A curve is called a general helix or cylindrical helix^{[3]} if its tangent makes a constant angle with a fixed line in space. A curve is a general helix if and only if the ratio of curvature to torsion is constant.^{[4]}
In mathematics, a helix is a curve in 3dimensional space. The following parametrisation in Cartesian coordinates defines a helix:^{[5]}
As the parameter t increases, the point (x(t),y(t),z(t)) traces a righthanded helix of pitch 2π and radius 1 about the zaxis, in a righthanded coordinate system.
In cylindrical coordinates (r, θ, h), the same helix is parametrised by:
A circular helix of radius a and pitch 2πb is described by the following parametrisation:
Another way of mathematically constructing a helix is to plot a complex valued exponential function (e^{xi}) taking imaginary arguments (see Euler's formula).
Except for rotations, translations, and changes of scale, all righthanded helices are equivalent to the helix defined above. The equivalent lefthanded helix can be constructed in a number of ways, the simplest being to negate any one of the x, y or z components.
The length of a circular helix of radius a and pitch 2πb expressed in rectangular coordinates as
equals , its curvature is and its torsion is
In music, pitch space is often modeled with helices or double helices, most often extending out of a circle such as the circle of fifths, so as to represent octave equivalency.
(There is currently no text in this page)
Main Page
Cladus: Eukaryota
Supergroup: Unikonta
Cladus: Opisthokonta
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Protostomia
Cladus: Spiralia
Cladus: Lophotrochozoa
Phylum: Mollusca
Classis: Gastropoda
Subclassis: Orthogastropoda
Superordo: Heterobranchia
Ordo: Pulmonata
Subordo: Eupulmonata
Clade: Stylommatophora
Cladus: Orthurethra
Informal group: Sigmurethra
Superfamilia: Helicoidea
Familia: Helicidae
Subfamilia: Helicinae
Genus: Helix
Species: H. albescens  H. ceratina 
H. engaddenis 
H. godetiana  †H. insignis 
H. lucorum  H. lutescens 
H. melanostomata 
H. obruta  H. pomatia 
H. texta 
H. vermiculata 
Helix Linnaeus, 1758
[[File:thumbthe staircaise in the Vatican Museums. This shows a helix]]
A Helix is a mathematical three dimensional curve. It has a constant angle to a fixed line, which is called its axis. Helices are commonplace in nature and the sciences.
