# The Full Wiki

## More info on Highly optimized tolerance

• Wikis

# Highly optimized tolerance: Wikis

Advertisements

Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

# Encyclopedia

### From Wikipedia, the free encyclopedia

Highly Optimized Tolerance (HOT) is a method of generating power law behavior in systems by including a global optimization principle. For some systems that display a characteristic scale, a global optimization term could potentially be added that would then yield power law behavior. It has been used to generate and describe internet-like graphs, forest fire models and may also apply to biological systems.

## Example

The following is taken for Sornette's book.

Consider a random variable, X, that takes on values xi with probability pi. Furthmore, lets assume for another parameter ri $x_i = r_i^{ - \beta }$

for some fixed β. We then want to minimize $L = \sum_{i=0}^{N-1} p_i x_i$

subject to the constraint $\sum_{i=0}^{N-1} r_i = \kappa$

Using Lagrange multipliers, this gives $p_i \propto x_i^{ - ( 1 + 1/ \beta) }$

giving us a power law. The global optimization of minimizing the energy along with the power law dependence between xi and ri gives us a power law distribution in probability.

## References

• Carlson, J. M. & Doyle, J. (1999) Phys. Rev. E 60, 1412–1427.
• Carlson, J. M. & Doyle, J. (2000) Phys. Rev. Lett. 84, 2529–2532.
• Doyle, J. & Carlson, J. M. (2000) Phys. Rev. Lett. 84, 5656–5659.
• Greene, K. (2005) Science News 168, 230.
• Li, L., Alderson, D., Tanaka, R., Doyle, J.C., Willinger, W., Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version). Internet Mathematics, 2005.
• Robert, C., Carlson, J. M. & Doyle, J. (2001) Phys. Rev. E 63, 56122, 1–13.
• Sornette, Didier (2000). Critical Phenomena in Natural Sciences. Springer.
• Zhou, T. & Carlson, J. M. (2000), Phys. Rev. E 62, 3197–3204.
• Zhou, T., Carlson, J. M. & Doyle, J. (2002) Proc. Natl. Acad. Sci. USA 99, 2049–2054.
Advertisements

Advertisements

 Got something to say? Make a comment. Your name Your email address Message