Statistics arose, no later than the 18th century, from the need of states to collect data on their people and economies, in order to administer them. Its meaning broadened in the early 19th century to include the collection and analysis of data in general. Today statistics is widely employed in government, business, and the natural and social sciences.
Because of its origins in government and its datacentric world view, statistics is considered to be not a subfield of mathematics but rather a distinct field that uses mathematics; some class it as a sister formal science. Its mathematical foundations were laid in the 17th and 18th centuries with the development of probability theory. The method of least squares was invented around the turn of the 19th century by several authors. Since then new techniques of probability and statistics have been in continual development. Modern computers have expedited largescale statistical computation, and have also made possible new methods that would be impractical to perform manually.
Contents 
The term statistics is ultimately derived from the New Latin statisticum collegium ("council of state") and the Italian word statista ("statesman" or "politician"). The German Statistik, first introduced by Gottfried Achenwall (1749), originally designated the analysis of data about the state, signifying the "science of state" (then called political arithmetic in English). It acquired the meaning of the collection and classification of data generally in the early 19th century. It was introduced into English by Sir John Sinclair.
Thus, the original principal purpose of Statistik was data to be used by governmental and (often centralized) administrative bodies. The collection of data about states and localities continues, largely through national and international statistical services. In particular, censuses provide regular information about the population.
The mathematical methods of statistics emerged from probability theory, which can be dated to the correspondence of Pierre de Fermat and Blaise Pascal (1654). Christiaan Huygens (1657) gave the earliest known scientific treatment of the subject. Jakob Bernoulli's Ars Conjectandi (posthumous, 1713) and Abraham de Moivre's The Doctrine of Chances (1718) treated the subject as a branch of mathematics.^{[1]} In the modern era, the work of Kolmogorov has been instrumental in formulating the fundamental model of Probability Theory, which is used throughout statistics.
The theory of errors may be traced back to Roger Cotes' Opera Miscellanea (posthumous, 1722), but a memoir prepared by Thomas Simpson in 1755 (printed 1756) first applied the theory to the discussion of errors of observation. The reprint (1757) of this memoir lays down the axioms that positive and negative errors are equally probable, and that there are certain assignable limits within which all errors may be supposed to fall; continuous errors are discussed and a probability curve is given.
PierreSimon Laplace (1774) made the first attempt to deduce a rule for the combination of observations from the principles of the theory of probabilities. He represented the law of probability of errors by a curve. He deduced a formula for the mean of three observations. He also gave (1781) a formula for the law of facility of error (a term due to Joseph Louis Lagrange, 1774), but one which led to unmanageable equations. Daniel Bernoulli (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.
The method of least squares, which was used to minimize errors in data measurement, was published independently by AdrienMarie Legendre (1805), Robert Adrain (1808), and Carl Friedrich Gauss (1809). Gauss had used the method in his famous 1801 prediction of the location of the dwarf planet Ceres. Further proofs were given by Laplace (1810, 1812), Gauss (1823), Ivory (1825, 1826), Hagen (1837), Bessel (1838), Donkin (1844, 1856), Herschel (1850), Crofton (1870), and Thiele (1880, 1889).
Other contributors were Ellis (1844), De Morgan (1864), Glaisher (1872), and Giovanni Schiaparelli (1875). Peters's (1856) formula for r, the "probable error" of a single observation was widely used and inspired early robust statistics (resistant to outliers).
In the nineteenth century authors on statistical theory included Laplace, S. Lacroix (1816), Littrow (1833), Dedekind (1860), Helmert (1872), Laurant (1873), Liagre, Didion, De Morgan, Boole, Edgeworth, and K. Pearson.
Adolphe Quetelet (17961874), another important founder of statistics, introduced the notion of the "average man" (l'homme moyen) as a means of understanding complex social phenomena such as crime rates, marriage rates, or suicide rates.
Charles S. Peirce (18391914) formulated frequentist theories of estimation and hypothesistesting in (18771878) and (1883), in which he introduced "confidence". Peirce also introduced blinded, controlled randomized experiments with a repeated measures design. Peirce invented an optimal design for experiments on gravity.
During the 20th century, the creation of precise instruments for agricultural research, public health concerns (epidemiology, biostatistics, etc.), industrial quality control, and economic and social purposes (unemployment rate, econometry, etc.) necessitated substantial advances in statistical practices.
Today the use of statistics has broadened far beyond its origins. Individuals and organizations use statistics to understand data and make informed decisions throughout the natural and social sciences, medicine, business, and other areas.
Statistics is generally regarded not as a subfield of mathematics but rather as a distinct, albeit allied, field. Many universities maintain separate mathematics and statistics departments. Statistics is also taught in departments as diverse as psychology, education, and public health.

