Intel 8086: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

Intel 8086
KL Intel D8086.jpg
Produced From 1978 to 1990s
Common manufacturer(s) Intel, AMD, NEC, Fujitsu, Harris (Intersil), OKI, Siemens AG, Texas Instruments, Mitsubishi.
Max. CPU clock rate 5 MHz to 10 MHz
Instruction set x86-16
Package(s) 40 pin DIP

The 8086[1] is a 16-bit microprocessor chip designed by Intel and introduced to the market in 1978, which gave rise to the x86 architecture. The Intel 8088, released in 1979, was a slightly modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer supporting logic chips[2]), and is notable as the processor used in the original IBM PC.




In 1972, Intel launched the 8008, the first 8-bit microprocessor[3]. It implemented an instruction set designed by Datapoint corporation with programmable CRT terminals in mind, that also proved to be fairly general purpose. The device needed several additional ICs to produce a functional computer, in part due to its small 18-pin "memory-package", which ruled out the use of a separate address bus (Intel was primarily a DRAM manufacturer at the time).

Two years later, in 1974, Intel launched the 8080[4], employing the new 40-pin DIL packages originally developed for calculator ICs to enable a separate address bus. It had an extended instruction set that was source- (not binary-) compatible with the 8008 and also included some 16-bit instructions to make programming easier. The 8080 device, often described as the first truly useful microprocessor, was nonetheless soon replaced by the 8085 which could cope with a single 5V power supply instead of the three different operating voltages of earlier chips.[5] Other well known 8-bit microprocessors that emerged during these years were Motorola 6800 (1974), Microchip PIC16X (1975), MOS Technology 6502 (1975), Zilog Z80 (1976), and Motorola 6809 (1977), as well as others.

The first x86 design

The 8086 was originally intended as a temporary substitute for the ambitious iAPX 432 project in an attempt to draw attention from the less-delayed 16 and 32-bit processors of other manufacturers (such as Motorola, Zilog, and National Semiconductor) and at the same time to top the successful Z80 (designed by former Intel employees). Both the architecture and the physical chip were therefore developed quickly (in a little more than two years[6]), using the same basic microarchitecture elements and physical implementation techniques as employed by the older 8085, and for which it also functioned as its continuation. Marketed as source compatible, it was designed so that assembly language for the 8085, 8080, or 8008 could be automatically converted into equivalent (sub-optimal) 8086 source code, with little or no hand-editing. This was possible because the programming model and instruction set was (loosely) based on the 8080. However, the 8086 design was expanded to support full 16-bit processing, instead of the fairly basic 16-bit capabilities of the 8080/8085. New kinds of instructions were added as well; self-repeating operations and instructions to better support nested ALGOL-family languages such as Pascal, among others.

The 8086 was sequenced[7] using a mix of random logic and microcode and was implemented using depletion load nMOS circuitry with approximately 20,000 active transistors (29,000 counting all ROM and PLA sites). It was soon moved to a new refined nMOS manufacturing process called HMOS (for High performance MOS) that Intel originally developed for manufacturing of fast static RAM products[8]. This was followed by HMOS-II, HMOS-III versions, and, eventually, a fully static version designed in CMOS and manufactured in CHMOS.[9] The original chip measured 33 mm² and minimum feature size was 3.2 μm.

The architecture was defined by Stephen P. Morse and Bruce Ravenel. Jim McKevitt and John Bayliss were the lead engineers of the development team and William Pohlman the manager. While less known than the 8088 chip, the legacy of the 8086 is enduring; references to it can still be found on most modern computers in the form of the Vendor ID entry for all Intel devices, which is 8086H (hexadecimal). It also lent its last two digits to Intel's later extended versions of the design, such as the 286 and the 386, all of which eventually became known as the x86 family.


The 8086 pin-assignments in min and max mode.
Main registers
AH AL AX (primary accumulator)
BH BL BX (base, accumulator)
CH CL CX (counter, accumulator)
DH DL DX (accumulator, other functions)
Index registers
SI Source Index
DI Destination Index
BP Base Pointer
SP Stack Pointer
Status register
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (bit position)
- - - - O D I T S Z - A - P - C Flags
Segment register
CS Code Segment
DS Data Segment
ES ExtraSegment
SS Stack Segment
Instruction pointer
IP Instruction Pointer
The 8086 registers

Buses and operation

All internal registers as well as internal and external data buses were 16 bits wide, firmly establishing the "16-bit microprocessor" identity of the 8086. A 20-bit external address bus gave an 1 MB (segmented) physical address space (220 = 1,048,576). The data bus was multiplexed with the address bus in order to fit a standard 40-pin dual in-line package. 16-bit I/O addresses meant 64 KB of separate I/O space (216 = 65,536). The maximum linear address space was limited to 64 KB, simply because internal registers were only 16 bits wide. Programming over 64 KB boundaries involved adjusting segment registers (see below) and was therefore fairly awkward (and remained so until the 80386).

Some of the control pins, which carry essential signals for all external operations, had more than one function depending upon whether the device was operated in "min" or "max" mode. The former was intended for small single processor systems whilst the latter was for medium or large systems, using more than one processor.

Registers and instructions

The 8086 had eight (more or less general) 16-bit registers including the stack pointer, but excluding the instruction pointer, flag register and segment registers. Four of them (AX,BX,CX,DX) could also be accessed as (twice as many) 8-bit registers (AH,AL,BH,BL, etc), the other four (BP,SI,DI,SP) were 16-bit only.

Due to a compact encoding inspired by 8085 and other 8-bit processors, most instructions were one-address or two-address operations which means that the result were stored in one of the operands. At most one of the operands could be in memory, but this memory operand could also be the destination, while the other operand, the source, could be either register or immediate. A single memory location could also often be used as both source and destination which, among other factors, further contributed to a code density comparable to (often better than) most eight bit machines.

Although the degree of generality of most registers were much greater than in the 8080 or 8085, it was still fairly low compared to the typical contemporary minicomputer, and registers were also sometimes used implicitly by instructions. While perfectly sensible for the assembly programmer, this complicated register allocation for compilers compared to more regular 16- and 32-bit processors such as the PDP-11, VAX, 68000, etc; on the other hand, compared to the 8085, or other simple (but popular) contemporary 8-bit microprocessors (like the 6502 or 6809), it was significantly easier to generate code for the 8086 design.

As mentioned above 8086 also featured 64 KB of 8-bit (or alternatively 32 K-word of 16-bit) I/O space. A 64 KB (one segment) stack growing towards lower addresses is supported by hardware; 2-byte words are pushed to the stack and the stack top (bottom) is pointed out by SS:SP. There are 256 interrupts, which can be invoked by both hardware and software. The interrupts can cascade, using the stack to store the return address.

The processor had some new instructions (not present in the 8085) to better support stack based high level programming languages such as Pascal and PL/M; some of the more useful ones were push mem-op, and ret size, supporting the "pascal calling convention" directly. (Several others, such as push immed and enter, would be added in the subsequent 80186, 80286, and 80386 designs.)


8086 has a 16 bit flag register. Out of these, 9 are active, and indicate the current state of the processor. These are — Carry flag, Parity flag, Auxiliary flag, Zero flag, Sign flag, Trap flag or Trace flag, Interrupt enable flag, Direction flag and Overflow flag.


There were also four sixteen-bit segment registers (CS, DS, SS, ES) that allowed the CPU to access one megabyte of memory in an unusual way. Rather than concatenating the segment register with the address register, as in most processors whose address space exceeded their register size, the 8086 shifted the 16-bit segment only 4 bits left before adding it to the 16-bit offset (16·segment + offset), therefore producing a 20-bit effective (or physical or external) address from the 32-bit segment:offset pair. As a result, each physical address could be referred to by 212 = 4096 different segment:offset pairs. Although considered complicated and cumbersome by many programmers, this scheme also had advantages; a small program (less than 64 kilobytes) could be loaded starting at a fixed offset (such as 0) in its own segment, avoiding the need for relocation, with at most 15 bytes of alignment waste. The 16-byte separation between segment bases was called a paragraph.

Compilers for the 8086-family commonly supported two types of pointer, near and far. Near pointers were 16-bit addresses implicitly associated with the program's code and/or data segment and so made sense only within parts of a program small enough to fit in one segment. Far pointers were 32-bit segment:offset pairs (resolving to 20-bit real addresses). Some compilers also supported huge pointers, which were like far pointers except that pointer arithmetic on a huge pointer treated it as a linear 20-bit pointer, while pointer arithmetic on a far pointer wrapped around within its initial 64-kilobyte segment.

To avoid the need to specify near and far on every pointer and every function which took or returned a pointer, compilers also supported "memory models" which specified default pointer sizes. The "small", "compact", "medium", and "large" models covered every combination of near and far pointers for code and data. The "tiny" model was like "small" except that code and data shared one segment. The "huge" model was like "large" except that all pointers were huge instead of far by default. Precompiled libraries often came in several versions compiled for different memory models.

In principle the address space of the x86 series could have been extended in later processors by increasing the shift value, as long as applications obtained their segments from the operating system and did not make assumptions about the equivalence of different segment:offset pairs. In practice the use of "huge" pointers and similar mechanisms was widespread, and though some 80186 clones did change the shift value, these were never commonly used in desktop computers.

According to Morse et al., the designers of the 8086 considered using a shift of eight bits instead of four, which would have given the processor a 16-megabyte address space.[10].

Subsequent expansion

The 80286's protected mode extended the processor's address space to 224 bytes (16 megabytes), but not by increasing the shift value. Instead, the 16-bit segment registers supply an index into a table of 24-bit base addresses, to which the offset is added. To support old software the 80286 also had a "real mode" in which address calculation mimicked the 8086. There was, however, one small difference: on the 8086 the address was truncated to 20 bits, while on the 80286 it was not. Thus real-mode pointers could refer to addresses between 100000 and 10FFEF (hexadecimal). This roughly 64-kilobyte region of memory was known as the High Memory Area, and later versions of MS-DOS could use it to increase available low memory.

The 80386 increased both the base address and the offset to 32 bits and introduced two more general-purpose segment registers, FS and GS. The 80386 also introduced paging. The segment system can be used to enforce separation of unprivileged processes in a 32-bit operating system, but most operating systems using paging for this purpose instead, and set all segment registers to point to a segment with an offset of 0 and a length of 232, giving the application full access to its virtual address space through any segment register.

The x86-64 architecture drops most support for segmentation. The segment registers still exist, but the base addresses for CS, SS, DS, and ES are forced to 0, and the limit to 264.

In x86 versions of Microsoft Windows, the FS segment does not cover the entire address space. Instead it points to a small data structure, different for each thread, which contains information about exception handling, thread-local variables, and other per-thread state. The x86-64 architecture supports this technique by allowing a nonzero base address for FS & GS.

Porting older software

Small programs could ignore the segmentation and just use plain 16-bit addressing. This allowed 8-bit software to be quite easily ported to the 8086. The authors of MS-DOS took advantage of this by providing an Application Programming Interface very similar to CP/M as well as including the simple .com executable file format, identical to CP/M. This was important when the 8086 and MS-DOS was new, because it allowed many existing CP/M (and other) applications to be quickly made available, greatly easing acceptance of the new platform.


Block diagram over Intel 8088 (a variant of 8086).

Although partly shadowed by other design choices in this particular chip, the multiplexed bus limited performance slightly; transfers of 16-bit or 8-bit quantities were done in a four-clock memory access cycle.[11] As instructions varied from 1 to 6 bytes, fetch and execution were made concurrent (as it remains in today's x86 processors): The bus interface unit fed the instruction stream to the execution unit through a 6 byte prefetch queue (a form of loosely coupled pipelining), speeding up operations on registers and immediates, while memory operations unfortunately became slower (4 years later, this performance problem was fixed with the 80186 and 80286). However, the full (instead of partial) 16-bit architecture with a full width ALU meant that 16-bit arithmetic instructions could now be performed with a single ALU cycle (instead of two, via carry), speeding up such instructions considerably. Combined with orthogonalizations of operations versus operand-types and addressing modes, as well as other enhancements, this made the performance gain over the 8080 or 8085 fairly significant, despite cases where the older chips may be faster (see below).

Execution times for typical instructions (in clock cycles):

Timings are best case, depending on prefetch status, instruction alignment, and other factors.

MOV reg,reg: 2, reg,im: 4, reg,mem: 8+EA, mem,reg: 9+EA,  mem,im: 10+EA cycles
ALU reg,reg: 3, reg,im: 4, reg,mem: 9+EA, mem,reg: 16+EA, mem,im: 17+EA cycles
JMP reg: 11, JMP label: 15, Jcc label: 16 (cc = condition code)
MUL reg: 70..118 cycles
IDIV reg: 101..165 cycles

EA: time to compute effective address, ranging from 5 to 12 cycles.

As can be seen from these tables, operations on registers and immediates were fast (between 2 and 4 cycles), while memory-operand instructions and jumps were quite slow; jumps took more cycles than on the simple 8080 and 8085, and the 8088 (used in the IBM PC) was additionally hampered by its narrower bus. The reasons why most memory related instructions were slow were threefold:

  • Loosely coupled fetch and execution units are efficient for instruction prefetch, but not for jumps and random data access (without special measures).
  • No dedicated address calculation adder was afforded; the microcode routines had to use the main ALU for this (although there was a dedicated segment + offset adder).
  • The address and data buses were multiplexed, forcing a slightly longer (33~50%) bus cycle than in typical contemporary 8-bit processors.

It should be noted, however, that memory access performance was drastically enhanced with Intel's next generation chips. The 80186 and 80286 both had dedicated address calculation hardware, saving many cycles, and 80286 also had separate (non-multiplexed) address and data buses.

Floating point

The 8086/8088 could be connected to a mathematical coprocessor to add floating point capability. The Intel 8087 was the standard math coprocessor, operating on 80-bit numbers, but manufacturers like Weitek soon offered higher performance alternatives.

Chip versions

The clock frequency was originally limited to 5 MHz (IBM PC used 4.77 MHz, 4/3 the standard NTSC color burst frequency), but the last versions in HMOS were specified for 10 MHz. HMOS-III and CMOS versions were manufactured for a long time (at least a while into the 1990s) for embedded systems, although its successor, the 80186/80188 (which includes some on-chip peripherals), has been more popular for embedded use.

Derivatives and clones

Soviet clone KP1810BM86.
OKI M80C86A QFP-56

Compatible and, in many cases, enhanced versions were manufactured by Fujitsu, Harris/Intersil, OKI, Siemens AG, Texas Instruments, NEC, Mitsubishi, and AMD. For example, the NEC V20 and NEC V30 pair were hardware compatible with the 8088 and 8086, respectively, but incorporated the instruction set of the 80186 along with some (but not all) of the 80186 speed enhancements, providing a drop-in capability to upgrade both instruction set and processing speed without manufacturers having to modify their designs. Such relatively simple and low-power 8086-compatible processors in CMOS are still used in embedded systems.

The electronics industry of the Soviet Union was able to replicate the 8086 through both industrial espionage and reverse engineering. The resulting chip, K1810BM86 was pin-compatible with the original Intel 8086 (К1810ВМ86 was a copy of the Intel 8086, not the Intel 8088) and had the same instruction set. However this IC was metric and was not mechanically compatible with the Intel products. The Intel microprocessors I8086 and I8088 were the core of the Soviet block-made PC-compatible ES1840 and ES1841 desktops. However, these computers had significant hardware differences from their authentic prototypes (respectively PC/XT and PC): ES1840 was Intel 8088 based, ES1841 was Intel 8086 based. Also, the data/address bus circuitry was designed independently of original Intel products. ES1841 was the first PC compatible computer with dynamic bus sizing (US Pat. No 4,831,514). Later some of the ES1841 principles were adopted in PS2 (US Pat. No 5,548,786) and some other machines (UK Patent Application, Publication No. GB-A-2211325, Published June. 28, 1989).

Microcomputers using the 8086

  • One of the most influential microcomputers of all, the IBM PC, used the Intel 8088, a version of the 8086 with an eight-bit data bus (as mentioned above).
  • The first commercial microcomputer built on the basis of the 8086 was the Mycron 2000.
  • The IBM Displaywriter word processing machine and the Wang Professional Computer, manufactured by Wang Laboratories, also used the 8086. Also, this chip could be found in the AT&T 6300 PC (built by Olivetti).
  • The first Compaq Deskpro used an 8086 running at 7.14 MHz, but was capable of running add-in cards designed for the 4.77 MHz IBM PC XT.
  • The FLT86 is a well established training system for the 8086 CPU still being manufactured by Flite Electronics International Limited in Southampton, England
  • The IBM PS/2 models 25 and 30 were built with an 8MHz 8086
  • The Tandy 1000 SL-series machines used 8086 CPUs.
  • The Amstrad PC1512, PC1640, and PC2086 all used 8086 CPUs at 8MHz.
  • As of 2002, NASA was still using original 8086 CPUs on equipment for ground-based maintenance of the Space Shuttle Discovery, to prevent software regression that might result from upgrading or from switching to imperfect clones.[12]

Notes and references

  1. ^ "Microprocessor Hall of Fame". Intel. Retrieved 2007-08-11.  
  2. ^ It also permitted cheap 8080-family chips to be used (such as the 8254 CTC, 8255 PIO, and 8259 PIC which were used in the IBM PC design). In addition, it made PCB layout simpler and boards cheaper, as well as demanding fewer (1 or 4-bit wide) DRAM chips.
  3. ^ using enhancement load pMOS logic (demanding 14V, achieving TTL-compatibility by having VCC at +5V and VDD at -9V)
  4. ^ using non-saturated enhancement load nMOS logic (demanding a higher gate voltage for the load transistor-gates)
  5. ^ made possible with depletion load nMOS logic (the 8085 was later made using HMOS processing, just like the 8086)
  6. ^ Two years from idea to product was considered fast for a complex design as almost no CAD-tools were used; four engineers and 12 layout people were simultaneously working on the chip.
  7. ^ 8086 used less microcode than many competitors designs, such as the MC68000 and others
  8. ^ Fast static RAMs in MOS technology (as fast as bipolar RAMs) was an important product for Intel during this period.
  9. ^ CHMOS is intels name for CMOS circuits manufactured using processing steps very similar to HMOS.
  10. ^ The designers actually contemplated using an 8-bit shift (instead of 4-bit), in order to create a 16 MB physical address space. However, as this would have forced segments to begin on 256 byte boundaries, and 1 MB was considered very large for a microprocessor around 1976, the idea was dismissed. Also, there were not enough pins available on a low-cost 40-pin package.Intel 8008 to 8086 by Stephen P. Morse et al.
  11. ^ Faster on 16-bit, although slower on 8-bit quantities, compared to typical contemporary "8-bit" CPUs.
  12. ^

See also

External links


Got something to say? Make a comment.
Your name
Your email address