The Full Wiki

More info on Interaction-free measurement

Interaction-free measurement: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


From Wikipedia, the free encyclopedia

In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment, the Elitzur-Vaidman bomb-testing problem, and certain double-cavity optical systems.


  • Mauritius Renninger, Messungen ohne Storung des Messobjekts (Observations without disturbing the object), (1960) Zeitschrift für Physik, 158 pp 417-421.
  • Mauritius Renninger, (1953) Zeitschrift für Physik, 136 p 251
  • Louis de Broglie, The Current Interpretation of Wave Mechanics, (1964) Elsevier, Amsterdam. (Provides discussion of the Renninger experiment.)
  • Robert H. Dicke, (1981) American J. Physics 49 p 925. (Provides a recent discussion of the Renninger experiment).
  • John G. Cramer, The Transactional Interpretation of Quantum Mechanics, (1986) Reviews of Modern Physics, 58, pp.647-688. (Section 4.1 reviews Renninger's experiment).
  • Avshalom C. Elitzur and Lev Vaidman, "Quantum mechanical interaction-free measurements". Foundations of Physics 23 (1993), 987-97.
  • Roger Penrose, (2004). The Road to Reality: A Complete Guide to the Laws of Physics. Jonathan Cape, London.
  • Andrew G. White, Jay R. Mitchell, Olaf Nairz, and Paul G. Kwiat, "'Interaction-free imaging," Physical Review A 58, (1998) 605.
  • Paul G. Kwiat, Harald Weinfurter, Thomas Herzog, Anton Zeilinger, and Mark A. Kasevich, "Interaction-free measurement," Physical Review Letters 74, (1995) 4763.
  • Paul G. Kwiat, The Tao of Quantum Interrogation, (2001).
  • Sean M. Carroll, Quantum Interrogation, (2006).
  • G. S. Paraoanu, "Interaction-Free Measurements with Superconducting Qubits", Physical Review Letters 97, (2006) 180406.


Got something to say? Make a comment.
Your name
Your email address