The Full Wiki

More info on Iron(II) carbonate

Iron(II) carbonate: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.


(Redirected to Siderite article)

From Wikipedia, the free encyclopedia

Siderite is also the name of a type of iron meteorite.

Siderite from Poland
Category Carbonate mineral
Chemical formula FeCO3
Strunz classification 05.AB.05
Dana classification
Color Pale yellow to tannish, grey, brown, green, red, black and sometimes nearly colorless
Crystal habit Tabular crystals, often curved - botryoidal to massive
Crystal system Trigonal - Hexagonal scalenohedral (3 2/m)
Twinning Lamellar uncommon on{0112}
Cleavage Perfect on on{0111}
Fracture Uneven to conchoidal
Tenacity Brittle
Mohs scale hardness 3.75 - 4.25
Luster Vitreous, may be silky to pearly
Streak White
Diaphaneity Translucent to subtranslucent
Specific gravity 3.5
Optical properties Uniaxial (-)
Refractive index nω = 1.875 nε = 1.633
Birefringence δ = 0.242
Dispersion Strong
References [1][2][3]

Siderite is a mineral composed of iron carbonate FeCO3. It takes its name from the Greek word sideros, “iron”. It is a valuable iron mineral, since it is 48% iron and contains no sulfur or phosphorus. Both magnesium and manganese commonly substitute for the iron.

Siderite has Mohs hardness of 3.5-4, a specific gravity of 3.8, a white streak and a vitreous or pearly luster.

Its crystals belong to the hexagonal system, and are rhombohedral in shape, typically with curved and striated faces. It also occurs in masses. Color ranges from yellow to dark brown or black, the latter being due to the presence of manganese (sometimes called manganosiderite).

Siderite is commonly found in hydrothermal veins, and is associated with barite, fluorite, galena, and others. It is also a common diagenetic mineral in shales and sandstones, where it sometimes forms concretions. In sedimentary rocks, siderite commonly forms at shallow burial depths and its elemental composition is often related to the depositional environment of the enclosing sediments.[4] In addition, a number of recent studies have used the oxygen isotopic composition of sphaerosiderite (a type associated with soils) as a proxy for the isotopic composition of meteoric water shortly after deposition.[5]


  1. ^ Handbook of Mineralogy
  2. ^ Mindat
  3. ^ Webmineral data
  4. ^ *Mozley, P.S., 1989, Relation between depositional environment and the elemental composition of early diagenetic siderite: Geology, v. 17, p. 704- 706
  5. ^ *Ludvigson, G.A., Gonzalez, L.A. Metzger, R.A., Witzke, B.J., Brenner, R.L., Murillo, A.P.and White, T.S., 1998, Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology: Geology, v. 26, p. 1039-1042
  • The Complete Book of Science, American Education Publishing, Columbus, Ohio 2005


Got something to say? Make a comment.
Your name
Your email address