Limestone: Wikis


Note: Many of our articles have direct quotes from sources you can cite, within the Wikipedia article! This article doesn't yet, but we're working on it! See more info or our list of citable articles.

Did you know ...

More interesting facts on Limestone

Include this on your site/blog:


From Wikipedia, the free encyclopedia

 —  Sedimentary Rock  —
Limestone Image
Limestone cropping at São Pedro de Moel beach, Marinha Grande, Portugal
Calcium carbonate: inorganic crystalline calcite and/or organic calcareous material.

Limestone is a sedimentary rock composed largely of the mineral calcite (calcium carbonate: CaCO3). Like most other sedimentary rocks, limestones are composed of grains, however, around 80-90% of limestone grains are skeletal fragments of marine organisms such as coral or foraminifera. Other carbonate grains comprising limestones are ooids, peloids, intraclasts, and extraclasts. Some limestones do not consist of grains at all and are formed completely by the chemical precipitation of calcite or aragonite. i.e. travertine.

The solubility of limestone in water and weak acid solutions leads to karst landscapes. Regions overlying limestone bedrock tend to have fewer visible groundwater sources (ponds and streams), as surface water easily drains downward through joints in the limestone. While draining, water and organic acid from the soil slowly (over thousands or millions of years) enlarges these cracks; dissolving the calcium-carbonate and carrying it away in solution. Most cave systems are through limestone bedrock.



Limestone often contains variable amounts of silica in the form of chert (aka chalcedony, flint, jasper, etc) or siliceous skeletal fragment (sponge spicules, diatoms, radiolarins), as well as varying amounts of clay, silt and sand sized terrestrial detritus carried in by rivers. The primary source of the calcite in limestone is most commonly marine organisms. These organisms secrete shells made of aragonite or calcite and leave these shells behind after the organism dies. Some of these organisms can construct mounds of rock known as reefs, building upon past generations. Below about 3,000 meters, water pressure and temperature causes the dissolution of calcite to increase non-linearly so that limestone typically does not form in deeper waters (see lysocline). Secondary calcite may also be deposited by supersaturated meteoric waters (groundwater that precipitates the material in caves). This produces speleothems such as stalagmites and stalactites. Another form taken by calcite is that of oolites (oolitic limestone) which can be recognized by its granular appearance.

Limestone makes up about 10% of the total volume of all sedimentary rocks.[1][2] Limestones may also form in both lacustrine and evaporite depositional environments.[3][4]

Calcite can be either dissolved by groundwater or precipitated by groundwater, depending on several factors including the water temperature, pH, and dissolved ion concentrations. Calcite exhibits an unusual characteristic called retrograde solubility in which it becomes less soluble in water as the temperature increases.

When conditions are right for precipitation, calcite forms mineral coatings that cement the existing rock grains together or it can fill fractures.

Karst topography and caves develop in carbonate rocks due to their solubility in dilute acidic groundwater. Cooling groundwater or mixing of different groundwaters will also create conditions suitable for cave formation.

Coastal limestones are often eroded by organisms which bore into the rock by various means. This process is known as bioerosion. It is most common in the tropics, and it is known throughout the fossil record (see Taylor and Wilson, 2003).

Because of impurities, such as clay, sand, organic remains, iron oxide and other materials, many limestones exhibit different colors, especially on weathered surfaces. Limestone may be crystalline, clastic, granular, or massive, depending on the method of formation. Crystals of calcite, quartz, dolomite or barite may line small cavities in the rock. Folk and Dunham classifications are used to describe limestones more precisely.

Travertine is a banded, compact variety of limestone formed along streams, particularly where there are waterfalls and around hot or cold springs. Calcium carbonate is deposited where evaporation of the water leaves a solution that is supersaturated with chemical constituents of calcite. Tufa, a porous or cellular variety of travertine, is found near waterfalls. Coquina is a poorly consolidated limestone composed of pieces of coral or shells.

During regional metamorphism that occurs during the mountain building process (orogeny) limestone recrystallizes into marble.

Limestone is a parent material of Mollisol soil group.


Limestone landscape

The Cudgel of Hercules, a tall limestone rock and Pieskowa Skała Castle in the background.

Limestone is partially soluble, especially in acid, and therefore forms many erosional landforms. These include limestone pavements, pot holes, cenotes, caves and gorges. Such erosion landscapes are known as karsts. Limestone is less resistant than most igneous rocks, but more resistant than most other sedimentary rocks. Limestone is therefore usually associated with hills and downland and occurs in regions with other sedimentary rocks, typically clays.

Bands of limestone emerge from the Earth's surface in often spectacular rocky outcrops and islands. Examples include the Burren in Co. Clare, Ireland; the Verdon Gorge in France; Malham Cove in North Yorkshire and the Isle of Wight[5], England; on Fårö near the Swedish island of Gotland, the Niagara Escarpment in Canada/United States, Notch Peak in Utah, the Ha Long Bay National Park in Vietnam and the hills around the Lijiang River and Guilin city in China.

The Florida Keys, islands off the south coast of Florida, are composed mainly of oolitic limestone (the Lower Keys) and the carbonate skeletons of coral reefs (the Upper Keys), which thrived in the area during interglacial periods when sea level was higher than at present.

Unique habitats are found on alvars, extremely level expanses of limestone with thin soil mantles. The largest such expanse in Europe is the Stora Alvaret on the island of Öland, Sweden. Another area with large quantities of limestone is the island of Gotland, Sweden. Huge quarries in northwestern Europe, such as those of Mount Saint Peter (Belgium/Netherlands), extend for more than a hundred kilometers.

The world's largest limestone quarry is at Michigan Limestone and Chemical Company in Rogers City, Michigan.[6]


Limestone is very common in architecture, especially in North America and Europe. Many landmarks across the world, including the Great Pyramid and its associated Complex in Giza, Egypt, are made of limestone. So many buildings in Kingston, Canada were constructed from it that it is nicknamed the 'Limestone City'. [7] On the island of Malta, a variety of limestone called Globigerina limestone was for a long time the only building material available, and is still very frequently used on all types of buildings and sculptures. Limestone is readily available and relatively easy to cut into blocks or more elaborate carving. It is also long-lasting and stands up well to exposure. However, it is a very heavy material, making it impractical for tall buildings, and relatively expensive as a building material.

The Great Pyramid of Giza. One of the Seven Wonders of the Ancient World, the structure is made entirely from limestone.
Courthouse built of limestone in Manhattan, Kansas
A limestone plate with a negative map of Moosburg in Bavaria is prepared for a lithography print

Limestone was most popular in the late 19th and early 20th centuries. Train stations, banks and other structures from that era are normally made of limestone. Limestone is used as a facade on some skyscrapers, but only in thin plates for covering rather than solid blocks. In the United States, Indiana, most notably the Bloomington area, has long been a source of high quality quarried limestone, called Indiana limestone. Many famous buildings in London are built from Portland limestone.

Limestone was also a very popular building block in the Middle Ages in the areas where it occurred since it is hard, is durable, and commonly occurs in easily accessible surface exposures. Many medieval churches and castles in Europe are made of limestone. Beer stone was a popular kind of limestone for medieval buildings in southern England.

Limestone and (to a lesser extent) marble are reactive to acid solutions, making acid rain a significant problem to the preservation of artifacts made from this stone. Many limestone statues and building surfaces have suffered severe damage due to acid rain. Acid-based cleaning chemicals can also etch limestone, which should only be cleaned with a neutral or mild alkaline-based cleaner.

Other uses include:

  • The manufacture of quicklime (calcium oxide) and slaked lime (calcium hydroxide);
  • Cement and mortar;
  • Pulverized limestone is used as a soil conditioner to neutralize acidic soil conditions;
  • Crushed for use as aggregate—the solid base for many roads;
  • Geological formations of limestone are among the best petroleum reservoirs;
  • As a reagent in flue gas desulfurization (sulfur dioxide air pollution control);
  • Glass making, in some circumstances;
  • Added to paper, plastics, paint, tiles, and other materials as both white pigment and a cheap filler.
  • Toothpaste
  • Suppression of methane explosions in underground coal mines
  • Added to bread and cereals as a source of calcium
  • Calcium supplement for poultry (when ground up)[8]
  • Remineralizing and increasing the alkalinity of purified water to prevent pipe corrosion and to return essential nutrients [9]
  • Used in blast furnaces to extract iron from its ore
  • Medicines
  • Cosmetics
  • Art (sculptures)



  • Taylor, P.D. and Wilson, M.A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62: 1-103.[1]

See also


Travel guide

Up to date as of January 14, 2010

From Wikitravel

Limestone [1] is a city in Maine located just over the border from New Brunswick, Canada.

Get in

From Caribou- Route 89 East. From North or South- U.S. Route 1. From Canada- 375 in New Brunswick goes to 229 in U.S. and straight into Limestone.

Get around

There is never any heavy traffic, not even moderate traffic. So using a car is by far the easiest way to go. The central part of Limestone is very small, walking around town is very easy.


Loring Air Force Base- It has a museum which can tell you about most of the activities that happened at the base. It is now mostly abandoned, with a Loring Job Corp Center, and a Humvee rebuild center. It was featured in the movie WarGames.

High School Sports Game- The Limestone Eagles have games in all kinds of sports. Soccer from August to October, Basketball from November to January, and Baseball and Track whenever the snow melts. There is a schedule at the school website, [2]

Trafton Lake-This campground hosts the 4th of July fireworks along with other events


Spud Speedway-It's a 1/3 mile paved circle race track. Technically it's in Caribou, but it's right outside of Loring. It cost $5 to get a seat in the main grandstands, but for $10 you can get into the pits. There are food stands in both spots. [3]

  • Rendezvous Restaurant, Eastgate Rd.  edit


The closest nightlife is over the border in Moncton.

  • Loring Inn, 2501 Virginia pl..  edit
This article is an outline and needs more content. It has a template, but there is not enough information present. Please plunge forward and help it grow!

1911 encyclopedia

Up to date as of January 14, 2010

From LoveToKnow 1911

LIMESTONE, in petrography, a rock consisting essentially of carbonate of lime. The group includes many varieties, some of which are very distinct; but the whole group has certain properties in common, arising from the chemical composition and mineral character of its members. All limestones dissolve readily in cold dilute acids, giving off bubbles of carbonic acid. Citric or acetic acid will effect this change, though the mineral acids are more commonly employed. Limestones, when pure, are soft rocks readily scratched with a knife-blade or the edge of a coin, their hardness being 3; but unless they are earthy or incoherent, like chalk or sinter, they do not disintegrate by pressure with the fingers and cannot be scratched with the finger nail. When free from impurities limestones are white, but they generally contain small quantities of other minerals than calcite which affect their colour. Many limestones are yellowish or creamy, especially those which contain a little iron oxide, iron carbonate or clay. Others are bluish from the presence of iron sulphide, or pyrites or marcasite; or grey and black from admixture with carbonaceous or bituminous substances. Red limestones usually contain haematite; in green limestones there may be glauconite or chlorite. In crystalline limestones or marbles many silicates may occur producing varied colours, e.g. epidote, chlorite, augite (green); vesuvianite and garnet (brown and red); graphite, spinels (black and grey); epidote, chondrodite (yellow). The specific gravity of limestones ranges from 2.6 to 2.8 in typical examples.

When seen in the field, limestones are often recognizable by their method of weathering. If very pure, they may have smooth rounded surfaces, or may be covered with narrow runnels cut out by the rain. In such cases there is very little soil, and plants are found growing only in fissures or crevices where the insoluble impurities of the limestone have been deposited by the rain. The less pure rocks have often eroded or pitted surfaces,. showing bands or patches rendered more resistant to the action of the weather by the presence of insoluble materials such as. sand, clay or chert. These surfaces are often known from the crust of hydrous oxides of iron produced by the action of the atmosphere on any ferriferous ingredients of the rock; they are sometimes black when the limestone is carbonaceous; a thin layer of gritty sand grains may be left on the surface of limestones which are slightly arenaceous. Most limestones which contain fossils show these most clearly on weathered surfaces, and the appearance of fragments of corals, crinoids and shells on the exposed parts of a rock indicate a strong probability that that rock is a limestone. The interior usually shows the organic structures very imperfectly or not at all.

Another characteristic of pure limestones, where they occur in large masses occupying considerable areas, is the frequency with which they produce bare rocky ground, especially at high elevations, or yield only a thin scanty soil covered with short grass. In mountainous districts limestones are often recognizable by these peculiarities. The chalk downs are celebrated for the close green sward which they furnish. More impure limestones, like those of the Lias and Oolites, contain enough insoluble mineral matter to yield soils of great thickness and value, e.g. the Cornbrash. In limestone regions all waters tend to be hard,. on account of the abundant carbonate of lime dissolved by percolating waters, and caves, swallow holes, sinks, pot-holes and underground rivers may occur in abundance. Some elevated tracts of limestone are very barren (e.g. the Causses), because the rain which falls in them sinks at once into the earth and passes underground. To a large extent this is true of the chalk downs, where surface waters are notably scarce, though at considerable depths the rocks hold large supplies of water.

The great majority of limestones are of organic formation, consisting of the debris of the skeletons of animals. Some are foraminiferal, others are crinoidal, shelly or coral limestones according to the nature of the creatures whose remains they contain. Of foraminiferal limestones chalk is probably the best known; it is fine, white and rather soft, and is very largely made up of the shells of globigerina and other foraminifera (see Chalk). Almost equally important are the nummulitic limestones so well developed in Mediterranean countries (Spain, France, the Alps, Greece, Algeria, Egypt, Asia Minor, &c.). The pyramids of Egypt are built mainly of nummulitic limestone. Nummulites are large cone-shaped foraminifera with many chambers arranged in spiral order. In Britain the small globular shells of Saccamina are important constituents of some Carboniferous limestones; but the upper portion of that formation in Russia, eastern Asia and North America is characterized by the occurrence of limestones filled with the spindle-shaped shells of Fusulina, a genus of foraminifera now extinct.

Coral limestones are being formed at the present day over a large extent of the tropical seas; many existing coral reefs must be of great thickness. The same process has been going on actively since a very early period of the earth's history, for similar rocks are found in great abundance in many geological formations. Some Silurian limestones are rich in corals; in the Devonian there are deposits which have been described as coral reefs (Devonshire, Germany). The Carboniferous limestone, or mountain limestones of England and North America, is sometimes nearly entirely coralline, and the great dolomite masses of the Trias in the eastern Alps are believed by many to be merely altered coral reefs. A special feature of coral limestones is that, although they may be to a considerable extent dolomitized, they are generally very Lfree from silt and mechanical impurities.

Crinoidal limestones, though abundant among the older rocks, are not in course of formation on any great scale at the present time, as crinoids, formerly abundant, are now rare. Many Carboniferous and Silurian limestones consist mainly of the little cylindrical joints of these animals. They are easily recognized by their shape, and by the fact that many of them show a tube along their axes, which is often filled up by carbonate of lime; under the microscope they have a punctate or fenestrate structure and each joint behaves as a simple crystalline plate with uniform optical properties in polarized light. Remains of other echinoderms (starfishes and sea urchins) are often found in plenty in Secondary and Tertiary limestones, but very seldom make up the greater part of the rock. Shelly limestones may consist of mollusca or of brachiopoda, the former being common in limestones of all ages while the latter attained their principal development in the Palaeozoic epoch. The shells are often broken and may have been reduced to shell sand before the rock consolidated. Many rocks of this class are impure and pass into marls and shelly sandstones which were deposited in shallow waters, where land-derived sediment mingled with remains of the creatures which inhabited the water. Fresh-water limestones are mostly of this class and contain shells of those varieties of mollusca which inhabit lakes. Brackish water limestones also are usually shelly. Corallines (bryozoa, polyzoa, &c.), cephalopods (e.g. ammonites, belemnites), crustaceans and sponges occur frequently in limestones. It should be understood that it is not usual for a rock to be built up entirely of one kind of organism though it is classified according to its most abundant or most conspicuous ingredients.

In the organic limestones there usually occurs much finely granular calcareous matter which has been described as limestone mud or limestone paste. It is the finely ground substance which results from the breaking down of shells, &c., by the waves and currents, and by the decay which takes place in the sea bottom before the fragments are compacted into hard rock. The skeletal parts of marine animals are not always converted into limestone in the place where they were formed. In shallow waters, such as are the favourite haunts of mollusca, corals, &c., the tides and storms are frequently sufficiently powerful to shift the loose material on the sea bottom. A large part of a coral reef consists of broken coral rock dislodged from the growing mass and carried upwards to the beach or into the lagoon. Large fragments also fall over the steep outward slopes of the reef and build up a talus at their base. Coral muds and coral sands produced by the waves acting in these detached blocks, are believed to cover two and a half millions of square miles of the ocean floor. Owing to the fragile nature of the shells of foraminifera they readily become disintegrated, especially at considerable depths, largely by the solvent action of carbonic acid in sea water as they sink to the bottom. The chalk in very great part consists not of entire shells but of debris of foraminifera, and mollusca (such as Inoceramus, &c.). The Globigerina ooze is the most widespread of modern calcareous formations. It occupies nearly fifty millions of square miles of the sea bottom, at an average depth of two thousand fathoms. Pteropod ooze, consisting mainly of the shells of pteropods (mollusca) also has a wide distribution, especially in northern latitudes.

Consolidation may to a considerable extent be produced by pressure, but more commonly cementation and crystallization play a large part in the process. Recent shell sands on beaches and in dunes are not unfrequently converted into a soft, semi-coherent rock by rain water filtering downwards, dissolving and redepositing carbonate of lime between the sand grains. In coral reefs also the mass soon has its cavities more or less obliterated by a deposit of calcite from solution. The fine interstitial mud or paste presents a large surface to the solvents, and is more readily attacked than the larger and more compact shell fragments. In fresh-water marls considerable masses of crystalline calcite may be produced in this way, enclosing well-preserved molluscan shells. Many calcareous fragments consist of aragonite, wholly or principally, and this mineral tends to be replaced by calcite. The aragonite, as seen in sections under the microscope, is usually fibrous or prismatic, the calcite is more commonly granular with a well-marked network of rhombohedral cleavage cracks. The replacement of aragonite by calcite goes on even in shells lying on modern sea shores, and is often very complete in rocks belonging to the older geological periods. By the recrystallization of the finer paste and the introduction of calcite in solution the interior of shells, corals, foraminifera, &c., becomes occupied by crystalline calcite, sometimes in comparatively large grains, while the original organic structures may be very wellpreserved.

Some limestones are exceedingly pure, e.g. the chalk and some varieties of mountain limestone, and these are especially suited for making lime. The majority, however, contain admixture of other substances, of which the commonest are clay and sand. Clayey or argillaceous limestones frequently occur in thin or thick beds alternating with shales, as in the Lias of England (the marlstone series). Friable argillaceous fresh-water limestones are called "marls," and are used in many districts for top dressing soils, but the name "marl" is loosely applied and is often given to beds which are not of this nature (e.g. the red marls of the Trias). The "cement stones" of the Lothians in Scotland are argillaceous limestones of Lower Carboniferous age, which when burnt yield cement. The gault (Upper Cretaceous) is a calcareous clay, often containing wellpreserved fossils, which lies below the chalk and attains considerable importance in the south-east of England. Arenaceous limestones pass by gradual transitions into shelly sandstones; in the latter the shells are often dissolved leaving cavities, which may be occupied by casts. Some of the Old Red Sandstone is calcareous. In other cases the calcareous matter has recrystallized in large plates which have shining cleavage surfaces dotted over with grains of sand (Lincolnshire limestone). The Fontainebleau sandstone has large calcite rhombohedra filled with sand grains. Limestones sometimes contain much plant matter which has been converted into a dark coaly substance, in which the original woody structures may be preserved or may not. The calcareous petrified plants of Fifeshire occur in such a limestone, and much has been learned from a microscopic study of them regarding the anatomy of the plants of the Carboniferous period. Volcanic ashes occur in some limestones, a good example being the calcareous schalsteins or tuffs of Devonshire, which are usually much crushed by earth movements. In the Globigerina ooze of the present day there is always a slight admixture of volcanic materials derived either from wind-blown dust, from submarine eruptions or from floating pieces of pumice. Other limestones contain organic matter in the shape of asphalt, bitumen or petroleum, presumably derived from plant remains. The wellknown Val de Travers is a bituminous limestone of lower Neocomian age found in the valley of that name near Neuchatel. Some of the oil beds of North America are porous limestones, in the cavities of which the oil is stored up. Siliceous limestones, where their silica is original and of organic origin, have contained skeletons of sponges or radiolaria. In the chalk the silica has usually been dissolved and redeposited as flint nodules, and in the Carboniferous limestone as chert bands. It may also be deposited in the corals and other organic remains, silicifying them, with preservation of the original structures (e.g. some Jurassic and Carboniferous limestones).

The oolitic limestones form a special group distinguished by their consisting of small rounded or elliptical grains resembling fish roe; when coarse they are called pisolites. Many of them are very pure and highly fossiliferous. The oolitic grains in section may have a nucleus, e.g. a fragment of a shell, quartz grain, &c., around which concentric layers have been deposited. In many cases there is also a radiating structure. They consist of calcite or aragonite, and between the grains there is usually a cementing material of limestone mud or granular calcite crystals. Deposits of silica, carbonate of iron or small rhombohedra of dolomite are often found in the interior of the spheroids, and oolites may be entirely silicified (Pennsylvania, Cambrian rocks of Scotland). Oolitic ironstones are very abundant in the Cleveland district of Yorkshire and form an important iron ore. They are often impure, and their iron may be present as haematite or as chalybite. Oolitic limestones are known from many geological formations, e.g. the Cambrian and Silurian of Scotland and Wales, Carboniferous limestone (Bristol), Jurassic, Tertiary and Recent limestones. They are forming at the present day in some coral reefs and in certain petrifying springs like those of Carlsbad. Their chief development in England is in the Jurassic rocks where they occur in large masses excellently adapted for building purposes, and yield the well-known freestones of Portland and Bath. Some hold that they are chemical precipitates and that the concentric oolitic structure is produced by successive layers of calcareous deposit laid down on fragments of shells, &c., in highly calcareous waters. An alternative hypothesis is that minute cellular plants (Girvanella, &c.), have extracted the carbonate of lime from the water, and have been the principal agents in producing the successive calcareous crusts. Such plants can live even in hot waters, and there seems much reason for regarding them as of importance in this connexion.

Another group of limestones is of inorganic or chemical origin, having been deposited from solution in water without the intervention of living organisms. A good example of these is the "stalactite" which forms pendent masses on the roofs of caves in limestone districts, the calcareous waters exposed to evaporation in the air of the cave laying down successive layers of stalactite in the places from which they drip. At the same time and in the same way "stalagmite" gathers on the floor below, and often accumulates in thick masses which contain bones of animals and the weapons of primitive cave-dwelling man. Calc sinters are porous limestones deposited by the evaporation of calcareous springs; travertine is a well-known Italian rock of this kind. At Carlsbad oolitic limestones are forming, but it seems probable that minute algae assist in this process. Chemical deposits of carbonate of lime may be produced by the evaporation of sea water in some upraised coral lagoons and similar situations, but it is unlikely that this takes place to any extent in the open sea, as sea water contains very little carbonate of lime, apparently because marine organisms so readily abstract it; still some writers believe that a considerable part of the chalk is really a chemical precipitate. Onyx marbles are banded limestones of chemical origin with variegated colours such as white, yellow, green and red. They are used for ornamental work and are obtained in Persia, France, the United States, Mexico, &c.

Limestones are exceedingly susceptible to chemical changes of a metasomatic kind. They are readily dissolved by carbonated waters and acid solutions, and their place may then be occupied by deposits of a different kind. The silification of oolites and coral rocks and their replacement by iron ores above mentioned are examples of this process. Many extensive hematite deposits are in this way formed in limestone districts. Phosphatization sometimes takes place, amorphous phosphate of lime being substituted for carbonate of lime, and these replacement products often have great value as sources of natural fertilizers. On ocean rocks in dry climates the droppings of birds (guano) which contain much phosphate, percolating into the underlying limestones change them into a hard white or yellow phosphate rock (e.g. Sombrero, Christmas Island, &c.), sometimes known as rock-guano or mineral guano. In the north of France beds of phosphate are found in the chalk; they occur also in England on a smaller scale. All limestones, especially those laid down in deep waters contain some lime phosphate, derived from shells of certain brachiopods, fish bones, teeth, whale bones, &c.

and this may pass into solution and be redeposited in certain horizons, a process resembling the formation of flints. On the sea bottom at the present day phosphatic nodules are found which have gathered round the dead bodies of fishes and other animals. As in flint the organic structures of the original limestone may be well preserved though the whole mass is phosphatized.

Where uprising heated waters carrying mineral solutions are proceeding from deep seated masses of igneous rocks they often deposit a portion of their contents in limestone beds. At Leadville, in Colorado, for example, great quantities of rich silver lead ore, which have yielded not a little gold, have been obtained from the limestones, while other rocks, though apparently equally favourably situated, are barren. The lead and fluorspar deposits of the north of England (Alston Moor, Derbyshire) occur in limestone. In the Malay States the limestones have been impregnated with tin oxide. Zinc ores are very frequently associated with beds of limestone, as at Vieille Montagne in Belgium, and copper ores are found in great quantity in Arizona in rocks of this kind. Apart from ore deposits of economic value a great number of different minerals, often well crystallized, have been observed in limestones.

When limestones occur among metamorphic schists or in the vicinity of intrusive plutonic masses (such as granite), they are usually recrystallized and have lost their organic structures. They are then known as crystalline limestones or marbles (q.v.). (J. S. F.)

<< Limes Germanicus

Limina Apostolorum >>

Simple English

Limestone is a chemical sedimentary rock, made up mostly of the mineral calcite (calcium carbonate: CaCO3).[1] When it is heated at a very high temperature, it becomes the metamorphic rock, marble. They are fairly dense, relatively easy to cut, or be shaped into blocks, and some forms are white in color. [2]


Limestone is easy to work with, so it is used for building and the bases of roads . Limestone became most popular in the 19th and 20th centuries for building things such as churches, banks and houses. It is used to make glass and cement. It can be used like chalk, as it is mostly calcium, so you can actually draw with the stone. People use it as decorations sometimes, as pebbles.


  1. "Limestone". Retrieved 2009-07-28. 
  2. Learn Science intermediate, grades 5 to 6, by Mike Evans and Linda Ellis
Error creating thumbnail: sh: convert: command not found


Got something to say? Make a comment.
Your name
Your email address