The word linear comes from the Latin word linearis, which means created by lines. In mathematics, a linear map or function f(x) is a function which satisfies the following two properties:
It can be shown that additivity implies the homogeneity in all cases where α is rational; this is done by proving the case where α is a natural number by mathematical induction and then extending the result to arbitrary rational numbers. If f is assumed to be continuous as well then this can be extended to show that homogeneity for α any real number, using the fact the rationals form a dense subset of the reals.
In this definition, x is not necessarily a real number, but can in general be a member of any vector space. A less restrictive definition of linear function, not coinciding with the definition of linear map, is used in elementary mathematics.
The concept of linearity can be extended to linear operators. Important examples of linear operators include the derivative considered as a differential operator, and many constructed from it, such as del and the Laplacian. When a differential equation can be expressed in linear form, it is particularly easy to solve by breaking the equation up into smaller pieces, solving each of those pieces, and adding the solutions up.
Linear algebra is the branch of mathematics concerned with the study of vectors, vector spaces (also called linear spaces), linear transformations (also called linear maps), and systems of linear equations.
Nonlinear equations and functions are of interest to physicists and mathematicians because they can be used to represent many natural phenomena, including chaos.
Contents 
For a device that converts a quantity to another quantity there are three basic definitions for integral linearity in common use: independent linearity, zerobased linearity, and terminal, or endpoint, linearity. In each case, linearity defines how well the device's actual performance across a specified operating range approximates a straight line. Linearity is usually measured in terms of a deviation, or nonlinearity, from an ideal straight line and it is typically expressed in terms of percent of full scale, or in ppm (parts per million) of full scale. Typically, the straight line is obtained by performing a leastsquares fit of the data. The three definitions vary in the manner in which the straight line is positioned relative to the actual device's performance. Also, all three of these definitions ignore any gain, or offset errors that may be present in the actual device's performance characteristics.
Many times a device's specifications will simply refer to linearity, with no other explanation as to which type of linearity is intended. In cases where a specification is expressed simply as linearity, it is assumed to imply independent linearity.
Independent linearity is probably the most commonlyused linearity definition and is often found in the specifications for DMMs and ADCs, as well as devices like potentiometers. Independent linearity is defined as the maximum deviation of actual performance relative to a straight line, located such that it minimizes the maximum deviation. In that case there are no constraints placed upon the positioning of the straight line and it may be wherever necessary to minimize the deviations between it and the device's actual performance characteristic.
Zerobased linearity forces the lower range value of the straight line to be equal to the actual lower range value of the device's characteristic, but it does allow the line to be rotated to minimize the maximum deviation. In this case, since the positioning of the straight line is constrained by the requirement that the lower range values of the line and the device's characteristic be coincident, the nonlinearity based on this definition will generally be larger than for independent linearity.
For terminal linearity, there is no flexibility allowed in the placement of the straight line in order to minimize the deviations. The straight line must be located such that each of its endpoints coincides with the device's actual upper and lower range values. This means that the nonlinearity measured by this definition will typically be larger than that measured by the independent, or the zerobased linearity definitions. This definition of linearity is often associated with ADCs, DACs and various sensors.
A fourth linearity definition, absolute linearity, is sometimes also encountered. Absolute linearity is a variation of terminal linearity, in that it allows no flexibility in the placement of the straight line, however in this case the gain and offset errors of the actual device are included in the linearity measurement, making this the most difficult measure of a device's performance. For absolute linearity the end points of the straight line are defined by the ideal upper and lower range values for the device, rather than the actual values. The linearity error in this instance is the maximum deviation of the actual device's performance from ideal.
In a different usage to the above, a polynomial of degree 1 is said to be linear, because the graph of a function of that form is a line.
Over the reals, a linear equation is one of the form:
where m is often called the slope or gradient; b the yintercept, which gives the point of intersection between the graph of the function and the yaxis.
Note that this usage of the term linear is not the same as the above, because linear polynomials over the real numbers do not in general satisfy either additivity or homogeneity. In fact, they do so if and only if b = 0. Hence, if b ≠ 0, the function is often called an affine function (see in greater generality affine transformation).
In Boolean algebra, a linear function is a function f for which there exist such that
A Boolean function is linear if A) In every row of the truth table in which the value of the function is 'T', there are an even number of 'T's assigned to the arguments of the function; and in every row in which the truth value of the function is 'F', there are an odd number of 'T's assigned to arguments; or B) In every row in which the truth value of the function is 'T', there are an odd number of 'T's assigned to the arguments and in every row in which the function is 'F' there is an even number of 'T's assigned to arguments.
Another way to express this is that each variable always makes a difference in the truthvalue of the operation or it never makes a difference.
Negation, Logical biconditional, exclusive or, tautology, and contradiction are linear functions.
In physics, linearity is a property of the differential equations governing many systems. For instance, Maxwell equations or the diffusion equation.
Linearity of a differential equation means that if two functions f and g are solution of the equation, then their sum f+g is also a solution of the equation.
In electronics, the linear operating region of a transistor is where the collectoremitter current is related to the base current by a simple scale factor, enabling the transistor to be used as an amplifier that preserves the fidelity of analog signals. Linear is similarly used to describe regions of any function, mathematical or physical, that follow a straight line with arbitrary slope.
Such linear electronic devices include linear filter, linear regulator, linear amplifier.
In military tactical formations, "linear formations" were adapted from phalanxlike formations of pike protected by handgunners towards shallow formations of handgunners protected by progressively fewer pikes. This kind of formation would get thinner until its extreme in the age of Wellington with the 'Thin Red Line'. It would eventually be replaced by skirmish order at the time of the invention of the breechloading rifle that allowed soldiers to move and fire independently of the large scale formations and fight in small, mobile units.
Linear is one of the five categories proposed by Swiss art historian Heinrich Wölfflin to distinguish "Classic", or Renaissance art, from the Baroque. According to Wölfflin, painters of the fifteenth and early sixteenth centuries (Leonardo da Vinci, Raphael or Albrecht Dürer) are more linear than "painterly" Baroque painters of the seventeenth century (Peter Paul Rubens, Rembrandt, and Velázquez) because they primarily use outline to create shape.^{[1]} Linearity in art can also be referenced in digital art. For example, hypertext fiction can be an example of nonlinear narrative, but there are also websites designed to go in a specified, organized manner, following a linear path.
In music the linear aspect is succession, either intervals or melody, as opposed to simultaneity or the vertical aspect.
In measurement, the term "linear foot" refers to the number of feet in a straight line of material (such as lumber or fabric) generally without regard to the width. It is sometimes incorrectly referred to as "lineal feet"; however, "lineal" is typically reserved for usage when referring to ancestry or heredity.[1] The words "linear"[2] & "lineal" [3] both descend from the same root meaning, the Latin word for line, which is "linea".
Linear is a word used to describe a games path of progression. Linear means the path does not branch  players go down a straight line, usually from leveltolevel or maptomap. Any of your actions will not change what you do next, meaning you have no option to where you'll go next. Some games may be partially linear due to side quests. Gamers tend to prefer nonlinear storyline and progression, but the linear style still has it's place. Realtime strategy games tend to favor linear advancement.
