Continuum mechanics  


Linear elasticity is the mathematical study of how solid objects deform and become internally stressed due to prescribed loading conditions. Linear elasticity relies upon the continuum hypothesis and is applicable at macroscopic (and sometimes microscopic) length scales. Linear elasticity is a simplification of the more general nonlinear theory of elasticity and is a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is only valid for stress states that do not produce yielding. These assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often through the aid of finite element analysis.
Contents 
Equations governing a linear elastic boundary value problem are based on three tensor partial differential equations for the balance of linear momentum and six infinitesimal straindisplacement relations. The systems of differential equations is completed by a set of linear algebraic constitutive relations.
In direct tensor form that is independent of the choice of coordinate system, these governing equations are:
where:
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are:
where the subscript is a shorthand for and indicates .
Engineering notation 

Engineering notation  

where:
An elastostatic boundary value problem for an isotropichomogeneous media is a system of 15 independent equations and equal number of unknowns (3 equilibrium equations, 6 straindisplacement equations, and 6 constitutive equations). Specifying the boundary conditions, the boundary value problem is completely defined. To solve the system two approaches can be taken according to boundary conditions of the boundary value problem: a displacement formulation, and a stress formulation.
In isotropic media, the elasticity tensor gives the relationship between the stresses (resulting internal stresses) and the strains (resulting deformations). For an isotropic medium, the elasticity tensor has no preferred direction: an applied force will give the same displacements (relative to the direction of the force) no matter the direction in which the force is applied. In the isotropic case, the elasticity tensor may be written:
where K is the bulk modulus (or incompressibility), and is the shear modulus (or rigidity), two elastic moduli. If the medium is homogeneous as well, then the elastic moduli will not be a function of position in the medium. The constitutive equation may now be written as:
This expression separates the stress into a scalar part on the left which may be associated with a scalar pressure, and a traceless part on the right which may be associated with shear forces. A simpler expression is:
where λ is Lamé's first parameter. Since the constitutive equation is simply a set of linear equations, the strain may be expressed as a function of the stresses as: (Sommerfeld 1964)
which is again, a scalar part on the left and a traceless shear part on the right. More simply:
where ν is Poisson's ratio and E is Young's modulus.
Elastostatics is the study of linear elasticity under the conditions of equilibrium, in which all forces on the elastic body sum to zero, and the displacements are not a function of time. The equilibrium equations are then
Engineering notation 

This section will discuss only the isotropic homogeneous case.
In this case, the displacements are prescribed everywhere in the boundary. In this approach, the strains and stresses are eliminated from the formulation, leaving the displacements as the unknowns to be solved for in the governing equations. First, the straindisplacement equations are substituted into the constitutive equations (Hooke's Law), eliminating the strains as unknowns:
Differentiating yields:
Substituting into the equilibrium equation yields:
or
where and are Lamé parameters. In this way, the only unknowns left are the displacements, hence the name for this formulation. The governing equations obtained in this manner are called NavierCauchy equations or, alternatively, the elastostatic equations.
Derivation of NavierCauchy equations in Engineering notation 

First, the direction will be considered. Substituting the straindisplacement equations into the equilibrium equation in the direction we have
Then substituting these equations into the equilibrium equation in the direction we have Solving and rearranging we have Following the same procedure for the direction and direction we have These last 3 equations are the NavierCauchy equations, which can be also expressed in vector notation as 
Once the displacement field has been calculated, the displacements can be replaced into the straindisplacement equations to solve for strains, which later are used in the constitutive equations to solve for stresses.
The elastostatic equation may be written:
Taking the divergence of both sides of the elastostatic equation and assuming the force has zero divergence () we have
Noting that summed indices need not match, and that the partial derivatives commute, the two differential terms are seen to be the same and we have:
from which we conclude that:
Taking the Laplacian of both sides of the elastostatic equation, and assuming in addition , we have
From the divergence equation, the first term on the left is zero (Note: again, the summed indices need not match) and we have:
from which we conclude that:
or, in coordinate free notation which is just the biharmonic equation in .
In this case, the surface tractions are prescribed everywhere on the surface boundary. In this approach, the strains and displacements are eliminated leaving the stresses as the unknowns to be solved for in the governing equations. Once the stress field is found, the strains are then found using the constitutive equations.
There are six independent components of the stress tensor which need to be determined, yet in the displacement formulation, there are only three components of the displacement vector which need to be determined. This means that there are some constraints which must be placed upon the stress tensor, to reduce the number of degrees of freedom to three. Using the constitutive equations, these constraints are derived directly from corresponding constraints which must hold for the strain tensor, which also has six independent components. The constraints on the strain tensor are derivable directly from the definition of the strain tensor as a function of the displacement vector field, which means that these constraints introduce no new concepts or information. It is the constraints on the strain tensor that are most easily understood. If the elastic medium is visualized as a set of infinitesimal cubes in the unstrained state, after the medium is strained, an arbitrary strain tensor may not yield a situation in which the distorted cubes still fit together without overlapping. The constraints on the strain tensor that are required to assure that this is the case were discovered by Saint Venant, and are called the "Saint Venant compatibility equations". These are 81 equations, 6 of which are independent nontrivial equations, which relate the different strain components. These are expressed in index notation as:
Engineering notation 

The strains in this equation are then expressed in terms of the stresses using the constitutive equations, which yields the corresponding constraints on the stress tensor. These constraints on the stress tensor are known as the BeltramiMichell equations of compatibility:
These constraints, along with the equilibrium equation (or equation of motion for elastodynamics) allow the calculation of the stress tensor field. Once the stress field has been calculated from these equations, the strains can be obtained from the constitutive equations, and the displacement field from the straindisplacement equations.
An alternative solution technique is to express the stress tensor in terms of stress functions which automatically yield a solution to the equilibrium equation. The stress functions then obey a single differential equation which corresponds to the compatibility equations.
Thomson's solution  point force in an infinite isotropic medium 

The most important solution of the NavierCauchy or elastostatic equation is for that of a force acting at a point in an infinite isotropic medium. This solution was found by William Thomson (later Lord Kelvin) in 1848 (Thomson 1848). This solution is the analog of Coulomb's law in electrostatics. A derivation is given in (Landau & Lifshitz § 8). Defining
where is Poisson's ratio, the solution may be expressed as where is the force vector being applied at the point, and is a tensor Green's function which may be written in Cartesian coordinates as: It may be also compactly written as: and it may be explicitly written as: In cylindrical coordinates () it may be written as: It is particularly helpful to write the displacement in cylindrical coordinates for a point force directed along the zaxis. Defining and as unit vectors in the and directions respectively yields: It can be seen that there is a component of the displacement in the direction of the force, which diminishes, as is the case for the potential in electrostatics, as 1/r for large r. There is also an additional ρdirected component. 
BoussinesqCerruti solution  point force at the origin of an infinite isotropic halfspace 

Another useful solution is that of a point force acting on the surface of an infinite halfspace. It was derived by Boussinesq(Boussinesq 1885) and a derivation is given in (See Landau & Lifshitz § 8). In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written as in Cartesian coordinates as:

Other solutions:
Elastodynamics is the study of linear elasticity which include variation in time. The most common case considered in elastodynamics is the wave equation. This section will discuss only the isotropic homogeneous case.
If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the three basic equations can be combined to form the elastodynamic equation:
From the elastodynamic equation one gets the wave equation
where
is the acoustic differential operator, and is Kronecker delta.
In isotropic media, the elasticity tensor has the form
where is the bulk modulus (or incompressibility), and is the shear modulus (or rigidity), two elastic moduli. If the material is homogeneous (i.e. the elasticity tensor is constant throughout the material), the acoustic operator becomes:
and the acoustic algebraic operator becomes
where
are the eigenvalues of with eigenvectors parallel and orthogonal to the propagation direction , respectively. In the seismological literature, the corresponding plane waves are called Pwaves and Swaves (see Seismic wave).
A plane wave has the form
with of unit length. It is a solution of the wave equation with zero forcing, if and only if and constitute an eigenvalue/eigenvector pair of the acoustic algebraic operator
This propagation condition may be written as
where denotes propagation direction and is phase velocity.
An elastic wave is a type of mechanical wave that propagates in elastic or viscoelastic materials. The elasticity of the material provides the restoring force of the wave. When they occur in the Earth as the result of an earthquake or other disturbance, elastic waves are usually called seismic waves.
Solids are often assumed to exhibit linear elasticity. That is, Hooke's law is assumed to be valid. The restoring force is directly proportional to the displacement (or strain), but is oppositely directed.
For anisotropic media, the elasticity tensor is more complicated, and in fact cannot even be depicted compactly on paper or screen, because of the four subscripts. Fortunately, the symmetry of the stress tensor means that there are at most 6 different elements of stress. Similarly, there are at most 6 different elements of the strain tensor . Hence the 4^{th} rank elasticity tensor may be written as a 2^{nd} rank matrix . Voigt notation is the standard mapping for tensor indices,
With this notation, one can write the elasticity matrix for any linearly elastic medium as:
As shown, the matrix is symmetric, because of the linear relation between stress and strain. Hence, there are at most 21 different elements of .
The isotropic special case has 2 independent elements:
The simplest anisotropic case, that of cubic symmetry has 3 independent elements:
The case of transverse isotropy, also called polar anisotropy, (with a single axis (the 3axis) of symmetry) has 5 independent elements:
When the transverse isotropy is weak (i.e. close to isotropy), an alternative parametrization utilizing Thomsen parameters, is convenient for the formulas for wave speeds.
The case of orthotropy (the symmetry of a brick) has 9 independent elements:
