Linear motion is motion along a straight line, and can therefore be described mathematically using only one spatial dimension. It can be uniform, that is, with constant velocity (zero acceleration), or nonuniform, that is, with a variable velocity (nonzero acceleration). The motion of a particle (a pointlike object) along the line can be described by its position x, which varies with t (time).
An example of linear motion is that of a ball thrown straight up and falling back straight down.
The average velocity v during a finite time span of a particle undergoing linear motion is equal to
The instantaneous velocity of a particle in linear motion may be found by differentiating the position x with respect to the time variable t. The acceleration may be found by differentiating the velocity. By the fundamental theorem of calculus the converse is also true: to find the velocity when given the acceleration, simply integrate the acceleration with respect to time; to find displacement, simply integrate the velocity with respect to time.
This can be demonstrated graphically. The gradient of a line on the displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under an acceleration time graph gives the velocity.
Linear motion is the most basic of all motions. According to Newton's first law of motion, objects not subjected to forces will continue to move uniformly in a straight line indefinitely. Under everyday circumstances, external forces such as gravity and friction will cause objects to deviate from linear motion and can cause them to come to a rest.
For linear motion embedded in a higherdimensional space, the velocity and acceleration should be described as vectors, made up of two parts: magnitude and direction. The direction part of these vectors is the same and is constant for linear motion, and only for linear motion.
